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FOREWARD

This report has been prepared by the Jansky and
Bailey Systems Engineering Department of Atlantic Research
Corporation under Contract No. NASW - 1305 to the Communica-
tion and Navigation Program Office of the National Aeronautics
and Space Administration, Washington, D. C.

—

\I;s purpose is to provide the National Aeronautics and
Space Administration with an evaluation of the technical factors
that affect the feasibility and cost of television reception
from synchronous satellites?’\

(ﬁfhe technique of analysis usegjin this report has been
developed in such a way that the evaluation can be updated to
take account of new data relative to technology and environ-
mental effects as such become available. This updating will
be particularly important in respect to updating of cost infor-
mation in new areas of technology and in the introduction of
data on envirommental effects as new data is developed from
experience and experiments. Two particularly important areas
upon which better environmental data is required are (1) the
values of indigenous noise in various types of receiving
station environments and (2) the specific effect of the ionos-
phere oa limiting the bandwidth of signals that can be
effectively transmitted on frequencies below 1,000 Mc/s.

The engineers of Jansky and Bailey Systems Engineering
Department are extremely grateful for the cooperation and help
received from members of government and industry who were
contacted for various types of information and data needed in
the course of this study. Particular appreciation is extended
to Mr. A. M. Greg Andrus of NASA Headquarters under whose
personal direction this project was formulated and whose
guidance, encouragement, and coastructive criticism have been
a valuable part of a team effort throughout the conduct of
the work.
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1.0 INTRODUCTION

1.1 GENERAL

In August 1965, the Communication and Navigation Program Office
of the National Aeronautics and Space Administration contracted with the
Jansky & Bailey Systems Engineering Department of Atlantic Research
Corporation to perform a study to investigate all factors that affect
the cost and quality of reception of television material trangmitted
via satellites. The results of this study are presented in this report.
In it an evaluation is made of factors effecting cost and quality of
reception as a function of effective radiated power from a synchronous
satellite. 1In particular this study specifies the technical requirements
for providing television video of defined grades of quality and
considers all combinations of equipment that will provide satisfactory
reception.

A large range of different values of ERP (Effective Radiated Power)
are assumed and a specific determination is made of minimum cost receiving
system parameters for each assumed value of satellite ERP. A separate set
of solutions is derived for operation in different parts of the frequency
spectrum from 200 Mc/s to 12,000 Mc/s. Thus, the results include combina-
tions of receiving stations' parameters that range from low cost
installations, such as would be reasonable for home type installations
using high satellite ERP, to more expensive receiving installations
such as might be more appropriate for specialized stations that would
serve terrestial (land based) distribution systems using low values of
satellite ERP. Cost and performance information has been obtained for

components which can be provided between the present and 1970 provided



a requirement is established. Information has been developed on a
component by component basis and the costs of alternative feasible
receiving system combinations have been derived. This has provided
a broader basis for comparison than would be possible had the evalua-
tion been limited to a combination of complete systems proposed by
various suppliers.

A computer program utilizing the IRM 360-30 system was used to
facilitate determination of a minimum cost receiving system from all
possible combinations of receiving system parameters. The body of this
study will explain the rationale used in optimization of system param-
eters for various values of assumed satellite power and for operation in
different parts of the spectrum. A detailed explanation will be provided
as to the development of the information which was fed to the computer.
An analysis will be given of the results obtained.

1.2 SPECIFIC PROBLEM LIMITS

To perform a completely exhaustive analysis of the stated problem
area is, at best, difficult. However, a meaningful analysis is possible
provided certain practical limitationsbare recognized. Therefore, the
assumptions underlying this study may be stated categorically as follows:

(a) The frequency range of detailed investigation is limited to
the range 200 Mc/s through 12,000 Mc/s. Propagation and technological
limitations preclude realistic consideration of frequencies outside this
band. At the lower end of this band cosmic noise and indigenous noise
become severe problems, and it is difficult to obtain appreciable gain

with economic antenna structures. Above 12,000 Mc/s the technology is

presently not well developed and atmosphereic attenuation begins to become

a serious problem.



(b) The satellite considered is in a synchronous equatorial orbit.
and has an ERP ranging from 30 dbw to 90 dbw. Its look angle from receiving
status is assumed to be 43°. Results using this look angle illustrate the
importance of taking into account a specific look angle or range of look

angles in design of antenna to suppress indigenous noise.

(c) Receiving stations will exist in quantities between one and
a million depending upon cost and demand. For the purpose of this study
concentration may be limited to an analysis of those components of a
receiving station that directly affect the solution of the one-way
transmission equation. These are referred to as primary components
to distinguish them from those components that do not affect transmission

system requirements. This study considers only the cost and performance

of those system components that fall in the primary category.

(d) The specific types of components which are available as
possible primary components are: yagi and parabolic antennas of all
sizes, germanium-arsenide, silicon and tunnel diodes, parametric amplifiers
in all modes, pre-amplifiers using transistors, waveguide, coaxial cable
and twin lead feed line, mixers, circulators, and horn and dipole feeds
for parabolas. 1In general, knowledge of the technology that will apply
to these types of system components is well defined through the time
period 1970, and projections of available costs and performance specifi-
cations are reliable for comparative analyses. However, extrapolation
beyond 1970 is not realistic. The cost of primary equipment installation
is not included since this varies from actual system to actual system and
may include numerous variables which would not make the study conducive

to comparative analyses.



(e) The analysis of the minimum cost receiving station includes
information, based on the most recent research, on ionospheric and
atmospheric propagation losses, attenuation in signal level due to rain
and clouds, Faraday rotation of the electromagnetic field, and noise
contributions from the earth, sun, radio stars, and other discrete sources.

(f) The primary source of information for indigenous noise, one
of the most important factors in the receiving system environment, is
the ITT Communications Handbook. This is an important limitation of
the study since the pertinent information is based upon measurements
made almost thirty years ago. Also, the available information had to be
extrapolated to cover the entire frequency range of interest. To
minimize the effect of this limitation, results are determined for
several values of indigenous noise ranging from a maximum value derived
from interpretation of the ITT Handbook data to a minimum value corres-
ponding to no indigenous noise. A 40 db range of values has been
considered in this report the maximum value being assumed to be applicable
to highly concentrated urban areas.

(g) The required S/N at the receiver output is assumed to be
40 db. With this magnitude of signal present the viewer would have a
good-to-excellent picture. The information bandwidth is assumed to be
4 Mc/s in accordance with the television transmission standards of the
U.S.A.; the type of modulation is assumed to be either FM (standard or
feedback) or AM-VSB. Curves for adjusting the results for other values
of required output quality are also included.

(h) This study assumes that ionospheric transmission bandwidth

is sufficient to permit use of the optimum modulation technique at all




frequencies considered. Several investigators have theorized on the
dispersive effects of the ionosphere on the amount of basebandwidth avail-
able for information transmission as a function of frequency. Most of
the analyses have considered the effects of PCM. The only commentator on
FM, Staras, considered systems with bandwidths more than twice those
determined to be the optimum for systems specified in this study. Thus,
there is not a sound basis for making valid judgements as to the adequacy
of ionospheric transmission bandwidth as a function of frequency and
modulation type. However, there is good evidence that no problem exists
with respect to operation of frequencies above 1,000 Mc/s. More import-
ant, there are indications that bandwidth limitation will occur for
transmission on frequencies below 1,000 Mc/s. Staras refers to a degrada-
tion associated with FM having twice the bandwidth considered optimum for
systems specified in this study. Unfortunately, no data is available

for the exact conditions specified as optimum herein. To minimize the
effect of this limitation on the use of the results of this study, cost
information has been provided for both AM-VSB and FM modes of operation
on frequencies below 1,000 Mc/s.

1.3 GENERAL APPROACH

The analytical model which was used to achieve the purposes of
this study, as outlinéd in the previous section, is a fairly rigorous
version of the one-way propagation equation which was developed specifi-
cally for the satellite TV problem. In effect it relates all the factors
which determine the magnitude of the output signal-to-noise ratio of a
receiving station. These factors may be divided into three categories:

(1) system design constants (modulation improvement, satellite ERP,




required quality of signal), (2) environmental effects (atmospheric,
ionospheric attenuation, indigenous noise), and (3) primary equipment
performance characteristics and costs (antenna gain, noise figure, feed
line loss).

Cost and performance information relative to the primary equip-
ment components was obtained through extensive consultations with
engineers and scientists associated with the testing and development
of the pertinent devices. In all cases an investigation was made to
obtain reliable information for establishing the cost of these devices
in quantities ranging between one and a million. Where the technology
for mass production was fully developed as with broadcast type television
receiver components, it was possible to do this easily. However, there
were some areas in which this was not possible, such as mixers, circula-
tors, parabolic antennas. Those items are not now mass produced; there-
fore, it was possible to obtain accurate information only on small
quantities. In such cases appropriate learning curves were applied to
determine the cost per unit for large quantities. The technique of
applying learning curves to extrapolate costs from small quantities of
new devices to large quantities of mass produced items is well established
and is generally used with considerable confidence for fixed price
competitive bidding.

1.4 SUMMARY OF RESULTS

In the main body of the report cost versus ERP curves are presented
for various combinations of frequency, indigenous noise, and quantities
of receivers. Correction factor curves are presented adjusting the results
to apply to other characteristics of operation than those used in the study

for comparative analyses.



The extensive cost information presented in Section 4.0 of this
report is summarized in Figures 1.4.1 through 1.4.6. Figure 1.4.1 shows
cost versus frequency for various ERP's and the receiver located in a large
city. It shows very clearly, that for a given ERP, the most advantageous
frequencies from a minimum cost standpoint are from 800 to 1,000 Mc/s.

In general, cost rises sharply below 600 Mc/s and also increases appre-
ciably about 1.0 Ge/s. The band from 600 Mc/s to 1.0 Ge/s is advantageous
for both environmental and equipment reasons. Below 600 Mc/s, indigenous
and cosmic noise introduce a high system noise level which must be
compensated for by larger antennas. Above 1.0 Gc/s, equipment becomes
expensive, while in the 600 Mc/s to 1.0 Ge/s band, present UHF tuner
techniques are applicable. For the case of 90 dbw satellite power

the cost does not increase at the lower frequencies. This is because
with this extremely high power, the noise level is adequately exceeded
even with the cheapest possible receiver configuration.

Figure 1.4.2 shows the same type curves as Figure 1.4.1, at an
assumed remote rural location where indigenous noise is zero. This would
be an extreme case since in general even rural areas encounter some
indigenous noise. The main difference is that the cost for operation
below 1.0 Ge/s is less for rural locations. However, at low values of
ERP the cost increases with reduced frequency because the noise level
established by the cosmic noise establishes a requirement for a large
antenna and in some cases a different modulation system than vestigial
sideband.

Figure 1.4.3 gives the ERP as a function of frequency, which

will allow a certain receiving system with a certain cost to be
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satisfactory. For a cost of $40 a very high ERP is required. Beyond
1.0 Ge/s a higher cost system is required for the range of ERP's which
are considered. Below 1.0 Gc/s, higher cost receiving systems do not
allow for much lower ERP. This is due to cost of antennas which will
suppress the indigenous noise and allow a satisfactory (S/N)o at the
reduced ERP's. Above 1.0 Gec/s, a higher increase in antenna gain can
be obtained with a certain price increase than can be obtained at the
lower frequencies. An increase in receiving system cost can then
reduce the required ERP significantly.

The effect on receiver cost due to changes in the standard of
operation is shown in Figure 1.4.4 for a city location and quantities
of one and 106. The computations made in the body of the report were
for a (S/N)0 of 40 db. The (S/N)0= 40 db curves are shown along
with curves for (S/N)o corresponding to specific grades of service.
Grade 1 is a picture of exceptional quality and no noticeable inter-
ference. Grade 2 is for a good picture with slight interference and
Grade 3 is a passable picture. At a certain point on the curves, the
minimum cost system configuration changes from vestigial sideband modu-
lation to frequency modulation. VSB is used for all systems above this
point while M is used for all systems for an ERP less than the break-
point value. The deviation in required ERP for the VSB systems is greater
than the deviation for the PM systems. The change in ERP is equal to the
change in (S/N)o for VSB systems, while the change in required ERP in
db is approximately 25 per cent of the change in (S/N)o for M systems.
This is due to the fact that in VSB systems, a change in (S/N)o must be

directly compensated for in ERP, while in an FM system, a change in
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(S/N)o will also change the modulation improvement factor. The necessary
correction for FM systems is discussed fully in Section 4.0.

The effect of indigenous noise on the system cost is also shown
in Figure 1.4.4. The difference in cost between city (high noise) and
rural (no indigenous noise) locations can be obtained from the curves
for Grade 3 service and n = 10 .

As can be seen, the presence of indigenous noise increases the
system cost by a factor of 4.0 at the lower ERP's. The data shown in
Figure 1.4.4 are the minimum cost system at each ERP considering all
frequencies.

Figure 1.4.5 illustrates the change in receiving system cost
due to indigenous noise at 600 Mc/s for quantities of one and 106. It
is seen that the difference between the no I.N. (indigenous noise) case
and maximum I.N. case increases as ERP is reduced. This is due to the
fact that as ERP is reduced, it becomes necessary to reduce the system
noise level which leads to a requirement for a high gain antenna. As
the gain in the antenna main beam is increased, the antenna sidelobes
are reduced and the indigenous noise is reduced.

The system noise level is made up of contributions from indigenous,
cosmic, and receiver noise. As the satellite ERP is reduced, a larger
antenna becomes necessary for two reasons. The first reason is to
provide enough signal at the receiver terminal and the second is to
suppress the indigenous noise contribution to the overall system noise
level.

There is no direct correspondence between the change in required

satellite ERP and the different cases of indigenous noise. It depends

12



8806 ¥ *90TAIDS JO 9peJIDH pue 380D SNSIdA dHHA ‘¥'¥°T oIndtg

(sxerrop) WALSXS DNIAIZOHY XYVIATYd 40 LSOO TIV.LAY

000°00L 000'0L 000l 00l ol
TTTT T T 7 TTTT T T T 7 TTT T T 1 TTT T T 1 0
(¢) ap 0°L2
(2) ap ¢'ge ot
(g'1) ap 0°0%
(1) ap %%
S A\ 0
ostoN | 3STON (€) ap 0°L2
N NS
.MMMMMNE 7 SIDATO0Y (0T [ D N o¢
T g1 A 9 AN / RN 9SION
/ // snoua Stpuy
ON
/ N W // SJ2A1999Y 01
~
/ ~<
7 AN L 0s
(€) ap 0' 12—/ \ \ A\ “
(2) ap ¢'ec /] d / _
09
(¢'1) ap 0'0v—]/ “
(1) a0 ¢'v7—/| WA 1
L “ 0L
dSA-NV /n
| S \ 1,
(*L'%°1 2an81 ) 9014198 JO apean Surpuodsagao) T / /
ypm o0 o'z Louanbaxyg “oAZ\wv tI9j3uwrered // /
- [ 06
NI ] S ] 11111 | NN ] 00t

|

13

(mgp} 4¥3 JLIT13LYS




ART978

*9STON SNOUdIIPUJ JO SINJBA JUSIDIII( J0] OIN 009 1B SWaISAS SUIATe09Y

1S0D WNWIUA JO S9NTUBNY SNOLIEA J0F JOMOJ 93I[[91ES PaIInbay SnSIsp }S07) [IB}OY *G*p°T 9anS1g

31 -G9 /21 -1S14

000°000‘T  000°‘00%

(sTeriop) WALSAS ONIAIZOAYH AHVINIMd 40 LSOO TIVIAYH

000°00T 000°0% 00002 000°01 ~ 000% 0002 O000T 00% 002 00108 1} 02 So
IR i 71T iryii 1 T TT1T T 1117 P 1 1 TPV T 117 V1T i T1TT T T T T 1 1 |
— —
(1)¢
Ny =9
[ qp 0% = N/S -
OIN 009 = Aouanbaxg
02
@< = r/ W~ , 0¢
/ -////1 ) //I //[
— . / ~— g
: /l// = /,rk 0¥
/./
N ~. N NA
- //O/ T _ - ,4 P
/',1. /I.I »
/0[[ , - —= 05
/ .............IILI.......
— /O/ / l:.//
/ 09
B 000000°T 30 AyrpUEnd — — SN
1 Jo fyjuend) —— 08
| 9SION Snoua3ipul ON W a
3STON Snoua3tpu] wnwrxelN mog qp 01 B
‘ , 06
SSTON STOUSS[pU] WNWIXEW @ J9ATR09Y T © I9AT998Y ooﬁ
B _ _ _ _ _ _ _ _ | ' J0 Kymuwend)
| S I I O I | [ PR O O A O O { [ S

(mqp) ¥IMOd AALVIAVH AAILDFAIT ALITTALYS

‘14




upon the percentage of the total noise level which is attributable to
the indigenous noise.

The variation in cost resulting from quantity variation is also
seen in Figure 1.4.5. A change in quantity of lO6 changes the cost
per system by a factor of 10. If the curves for quantities of 102
and 104 were placed on the Figure, there would be equal spacing between
the curves for the four different quantities. For a change in quantity
of 100 times, the associated cost is reduced by a factor of .59.

Figure 1.4.6 shows the cost of receiving systems as a function
of (S/N)0 for various satellite ERP's.

Figure 1.4.7 shows the descriptions of the various grades of
service and the S/N (db) required at the output of a receiver where
conventional television, which uses AM-VSB, is employed. It is impor tant
to recognize that there is a difference of 17 db or a ratio of 50 times
in power requirement for excellent quality over that required for pass-
able quality. When PM modulation is used instead of AM-VSB, the
corresponding ratios are approximately 8 db less as will be discussed

further in later sections of this report.




RETAIL COST OF PRIMARY RECEIVING SYSTEM (dollars)

20,000 T T T
Parameter: Satellite ERP (dbw)
Frequency 1.0 Gec
Maximum Indigenous Noise
10,000— Quantity : One Million Receivers
= /
40004 //
2000} //
1000
400 | —
p— /
//
200} — |
50 dbw
/
100 ———
- —______-—
}— /
- / /
. _— L 90 dbw
16
10 20 30 40
OUTPUT SIGNAL-T?-NOISE RATIO (dbL) |
L 1
5 4 3 2 1

CORRESPONDING GRADE OF SERVICE

Figure 1.4,6. Retail Cost Versus Desired Grade of Service of
Minimum Cost Receiving Systems at 1.0 Gc.

16



MEDIAN
éLGANDAEL DESCRIPTION OBSERVER
S/N (db)
1 EXCELLENT; PICTURE OF EXTREMELY HIGH QUALITY 44.5
2 FINE; HIGH QUALITY; INTERFERENCE PERCEPTIBLE 33.5
3 PASSABLE; ACCEPTABLE QUALITY INTERFERENCE 27.0
NOT OBJECTIONABLE
4 MARGINAL; POOR QUALITY; INTERFERENCE 23.0
SOMEWHAT OBJECTIONABLE
5 INFERIOR; VERY POOR QUALITY; OBJECTIONABLE 17.0
INTERFERENCE PRESENT
6 UNUSABLE; SO BAD COULD NOT WATCH IT —

*A S/N OF 40 db WAS USED AS A REPRESENTATIVE VALUE IN THIS STUDY.

Figure 1.4.7, Quality of Picture Versus Receiver (S/N)
(Based on New York City UHF TV Study).“
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2.0 ANALYTICAL MODEL

2.1 GENERAL

As mentioned in the introduction, before the cost of the receiving
station can be determined the system equation, which relates the environ-
mental parameters, the hardware parameters and the operational require-
ments, must be established. In developing the general equation, the
coordinate system shown in Figure 2.2.1 and the model shown in Figure
2.3.1 have been used. All factors which contribute to the system equation
for the frequency range 100 Mc.f. 12 Gc are represented. The general
system equation will be developed and will be simplified by eliminating
those factors having negligible influence. Each of the system factors
is then discussed and evaluated in detail.

2.2 COORDINATE SYSTEM

In the development of the systems equation, a spherical coordinate
system will be used. The general coordinate system is shown in Figure
2.2.1. The center of the system is the receiver location with X in the
direction of increasing longitude and constant latitude and Y in the
direction of increasing latitude and constant longitude. Of principal
interest in this study is the angle from the normal,?. A particular
® of interest is the angle to the line of sight with the satellite.
This will be called Ys. This 9s can be determined from the coordinate
system geometry as a function of latitude and relative longitude.
Relative longitude is determined as the longitudinal separation of the
receiver position and the satellite fix. ©s is given as a function of

the latitude and relative longitude in Figure 2.2.2.
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Receiver Location

Y
X =Y Plane is Tangent to the Earth's Surface
X is Longitude

Y is Latitude
Z is Normal to the Earth's Surface

Figure 2.2.1. General Coordinate System.
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ANGLE BETWEEN THE RECEIVER POSITION NORMAL AND
THE SATELLITE LINE-OF-SIGHT (degrees)
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Figure 2.2.2. 6 gasa Function of Latitude

and Relative Longitude.
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The angle 9s is an important parameter since many of the environ-
mental factors which enter the system model are functions of 8s. With
the use of the world map shown in Figure 2.2.3, 9s can be determined
for any position in the world. It should be kept in mind that the
antenna elevation angle is 90° - Os.

2.3 SYSTEM EQUATION

Figure 2.3.1 shows in a pictorial sense the various parameters
which will influence system operation. The symbols shown in Figure

2.3.1 which have not been defined previously are defined below:

TCK = effective background cosmic noise
TD = effective brightness temperature of the ith discrete
i radio noise source
TION = ambient temperature of the ionosphere
atm - ambient temperature of the atmosphere
Tg = ambient temperature of the earth
TRF = ambient temperature of the receiver RF components
Tr = ambient temperature of the rain and clouds
o = lnormalized percentage of the energy passing through the
ionosphere which is absorbed by the ionosphere
B = 1normalized percentage of the energy passing through the
atmosphere which is absorbed by the atmosphere
L = 1normalized percentage of the energy passing through the
feeder line which is absorbed by the feeder line
QV = lnormalized percentage of the energy passing through rain
‘ in the vertical direction which is absorbed by rain
QH = 1normalized percentage of the energy passing through the

rain in the horizontal direction that is absorbed by rain

lNormalized percentage is a ratio or the fraction of the energy
absorbed or lost where 1.0 represents total energy otherwise available.
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Figure 2.3.1. Environmental Model for a Ground Receiver.



length of the rain in the normal direction
1-NK = antenna radiation loss (ohmic)
antenna radiation efficiency

length of the rain in the horizontal direction from
the receiver

receiver noise figure

receiver noise temperature = (F-1)290

1normalized percentage of energy loss due to polariza-

tion mismatch of the satellite and receiving antennas
caused by Faraday rotation occurring in the ionosphere

effective brightness temperature associated with in-
digenous and interfering noise sources

angle above the horizontal within which the antenna
sees TI

angle subtended by the ith discrete source

antenna gain in the direction determined by © and 9
average antenna gain over the solid angle determined
by -90° + ¥ _ 6 _90° - ¥ - <P< T, which is a sector

near the horizon that accepts indigenous noise

average gain over the front half of the antenna, which
is the region that accepts sky noise

average gain over the back half of the antenna, which
is the region that accepts thermal earth noise

average gain with respect to discrete sources

effective antenna area

The complexity of the model illustrated in Figure 2.3.1 is neces-

sary to account for all factors which affect the output signal and the

output noise of the receiver,

Each source of interference is expressed in terms of its equivalent

brightness temperature. There are three major sources of interference:

1Normalized percentage is a ratio of the fraction of the energy

absorbed or lost where 1.0 represents total energy otherwise available.
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(1) noise from the sky arrives at the antenna over the front half of the
antenna when the antenna is pointed at a synchronous satellite; (2) noise
from terrestrial sources, or indigenous noise, arrives at angles slightly
above the horizontal; and (3) noise from the hot earth arrives over the
back half of the antenna.

Beyond the atmosphere, cosmic noise originates as well as noise
from discrete radio sources. This noise is attenuated in traveling to
the antenna through the atmosphere and any rain or clouds which may be
present. Noise also originates in the atmosphere and ionosphere due to
black body radiation, and is equal to the product of the medium absorp-
tion factor and ambient temperature. The total brightness temperature
at the front half of the antenna is

T, = [Tc(l-a') (1-P) + Br_ _+ ZTION](I-QN) + QyT,
2.3.1
where Tc = TCK +-%&Di. The last term in Equation 2.3.1 is due to
absorption by rain and clouds.

At low angles above the horizontal the antenna is susceptible to
energy traveling in a horizontal direction. The major portion of this
energy is indigenous noise and interference from other systems. The
indigenous noise can be attenuated by rain. A contribution to the
brightness temperature in the horizontal direction is then made by the
rain and is equal to the product of the ambient temperature of the rain
and the percentage of the energy absorbed. Total brightness temperature

in the horizontal direction is then

T. = T.(1-Q ,) + T Q
H I H rH 2.3.2
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The back of the antenna is exposed to black body radiation from
the ground and the brightness temperature over this region is approxi-
mately the ambient temperature of the ground since the ground is nearly

a perfect absorbing medium.

2.3.3
With all potential sources of interference expressed in terms of
an equivalent brightness temperature, the effective antenna temperature

is given by the relation
A
= — e © 8) sin O 48
T, w//T(CP, ) G(?,8) sin © d9gop 234
oo

where T(?,8) is the brightness temperature at a particular direction of
arrival. Assuming the brightness temperature defined in Equations 2.3.1 -
2.3.3 to be constant over their solid angles of interest, Equation

2.3.4 can be rewritten as

_ 1 {Q S 40735 LQ75
Ty = 7w 1 TC8g + TGy + ETEGE}

2.3.5

where Qs’ QI and QE are the solid angles over which the antenna looks at

g’ GI and GE

are the average antenna gains over these solid angles respectively.

the sky, indigenous noise, and the earth, respectively and G

The assumption of constant brightness temperature over each of
the three solid angles is good for TS and TE (except for the contribu-
tion of discrete sources on Ts). And although the indigenous noise
depends upon the direction of arrival, there are not sufficient data

available to make a more rigorous treatment worthwhile.
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Assuming ¥ = 10°, values for the three solid angles are
Qs = 2T . Q], QI = 2™ = ,109 and QE = 2™ steradians. The antenna
noise power which is given by KBTA is attenuated by the transmission

line to the receiver terminals. The total system noise temperature

referenced to the receiver input terminal is

= - + T
Ty T, (1-1) + LTen .

2.3.6
where TE is the effective receiver temperature.
The desired signal experiences atmospheric, ionospheric, rain and
feeder line absorption along with a possible antenna polarization mismatch
loss due to Faraday rotation in the ionosphere. At the receiver input

terminals the desired signal strength in watts is

Py Ap(1-F ) (1-) (1-8) (1-Q) (1-1)
4R

S =
2.3.7
where PT is satellite ERP.

The output signal-to-noise ratio can be expressed in terms of the

input signal strength and noise temperature by the relationship

M = 1=

KT\B 2.3.8

where I is the modulation improvement factor and B is the system noise
bandwidth (predetection). The previous equations can then be combined

to give the output signal-to-noise power ratio of the receiver.

i P (1-FL)(1-Q)(1-B)(1-QN)(l-L)ARI

. -
TR KB -
4™RTK {T! (1-L) + LTRF + TE}

Zlm
o 1o

2.3.9
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where, TA’ the antenna temperature is

_ s = .
Ty =7 VI (1-Qp) + TrQN> +t32 GI(~TI(1 Q) + TrQH> +

T GE _
—55— + D + QTRF
2.3.10

The contribution to antenna temperature from discrete radio sources, D,
is given by:

D= ZDDiTD, (1-2) (1-B) (1-q) ED—l
1

Finally the total background noise (cosmic noise temperature) is given
by:

= - - B
Tog = Tex (1) (1-F) + o1+ Br

I0 atm

Equation 2.3.9 is the system equation and relates all paramemters
which determine the system operation. It holds only for linear modula-
tion improvement factors such as FM improvement. For other types of

systems a simple modification is necessary.

2.4 ENRIVONMENTAL EFFECTS

The envirommental effects which enter the system equation have
been treated fairly extensively in the literature. They may be broadly
categorized into two groups (l) environmental attenuation and loss
factors, and (2) environmental noise. These effects are treated
extensively in Appendices A and B respectively. In particular, considera-
tion is given to values for cosmic noise brightness temperature (TTK)’
atmosphereic attenuation (B), ionospheric absorption (®), values for
rain attenuation at various frequencies, losses due to Faraday rotation,

and the information presently available on indigenous noise.
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In comparison to T T , and 3 the effects of TI and @

TK’ “atm ON

may be considered negligible. Also, loss due to Faraday rotation
is insignificent above 2 Gec/s. For the other frequencies three
polarization systems are considered, and each will yield a differ-
ent loss due to polarization mismatch.

Type 1 - Both transmitting and receiving antennas are
linearly polarized.

Type II - The transmitting antennas are circularly polarized
and the receiving antenna is linearly polarized.
Type III - Both transmitting and receiving antennas are

circularly polarized.

For Type I, the maximum loss versus frequency is given in
Table A-2 of Appendix A.

A polarization system of Type II obviously results in a 3 db
loss. Type III systems should be lossless except in the case of extreme
polarization rotation when a change in the sense of circular polariza-
tion is experienced. For this condition the loss could be greater
than 20 db.

At the present time, the available data on indigenous noise is
limited and outdated. CRPL is currently establishinz a program to
obtain extensive indigenous noise dats and develop meaningful noise
statistics. The current standard noise data is found in the ITT Hand-
book. This data presents the noise in terms of equivalent field strength.
Indigenous noise values are given up to 1.0 Gec/s for urban or city

locations. Urban indigenous noise decreases exponentially with frequency.
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On a log-log plot it is linear. By extending this line of the log-
log noise versus frequency plot beyond 1 Ge/s values were extrapolated
out to 12 Ge/s.

The data in terms of equivalent noise field strength (Ei) can

be converted to an equivalent brightness temperature, through the

relation 2
E, 2 kP
T =—= =
I z 4™ (V/2) B

2.4.1
where Ei is the noise field strength given by the ITT data for a
10 Kc bandwidth, A is wavelength, z, is the impedance of free space
which is 120™ ohms, K is Boltzman's constant, ¥/2 is the ratio of the
angle subtended by the indigenous noise at the antenna to the total
solid angle, 4T, Kn is a correction factor to convert the basic field
strength data to field strength for other than 10 Kc, and B is

bandwidth. (See Appendix B)

2.5 ANIENNA PATTERN FACTORS (G, Gg, G,)

The antenna gain in the direction of interfering sources is
the direct measure of the interference suppression characteristics
of the antenna. The solid angles, QE’ QI and QS over which Eﬁ, EI
and ES are determined, make up the total solid angle of 4T steradians,

i.e., OE + QI + QS = 4T, Every point on the antenna pattern is then

considered to fall within angles corresponding to average gains of
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The average gain of the antenna over the total solid angle is

the radiation efficiency N

.
6=y Jed=n 2.5.1
L

By integrating separately over the individual solid angles of interest,

we have

1 1 1 _
= I o6 + e f GdQ2 t o f Gdf) = Ny 2.5.2
Q Q Q
S 1 E
which becomes
QS _ QI _ QE _
4_11' GS + 4_" GI +ZE GE = NR 2.5.3

Each term in the equation represents the normalized percentage
of radiated or received power in the sectors defined by solid angles
QS’ QI and QE with the total normalized power defined as the radiation
efficiency. As the main lobe antenna gain is increased, a greater
percentage of the power is radiated through the main lobe and less
power is radiated through the sidelobes and backlobes which determine
Ei and Eﬁ. As the mainlobe gain increases, G, will increase and G,

S I

and Eﬁ will decrease.
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The average gain factors can be determined, as a function of
mainlobe gain, from the patterns of the antenna. For an isotropic
antenna having radiation efficiency of 1, the average gain factors
Eé, E& and Eﬁ are each equal to 1. The relative effect of the antenna
on the amount of energy radiated or received in the sectors QS’ QI and
QG in this case is proportional to the value of their respective solid
angles. An antenna constructed to have gain in the mainlobe modifies
the effective energy received from different directions causing the
average gain to increase in‘the direction of the mainlobe and to de-
crease in the direction of the sidelobes and backlobes. The average
gain of any antenna neglecting radiation loss is 1. Only the distri-
bution of gain varies with angle as antennas are made directional.

For the case of determining the relative effect of antenna directivity
on interference suppression, it is necessary to separately determine
the average gain of an antenna over each sector for which the inter-
ference effects are different. It has been determined for purposes

of analyzing the effect of interference on reception from satellites
that interference may be considered to arrive from these separate types
of sources identified generally as the sky, the man made environment
on earth, and the earth itself, The solid angles on which each of
these distinct types of sources effect reception have been identified

as QS’ Q_, and QE respectively. € is the solid angle above earth limited

I’ S

by an angle above the horizon of 10°. QI is the solid angle from the

horizon to 10°, and QE is the hemisphere including the earth below the

horizon. QS includes in effect noise from the sky. QI includes man

made indigenous noise, QE includes noise radiated from the earth itself,
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To determine the effect of noise of the three types just des-
cribed, it may be assumed that each is homogeneous within its solid
angle. Thus, the related effect of an antenna on reception or suppres-
sion of noise relative to reception of a signal must be determined by
calculating the average gain of the antenna in the directions bounded
by the solid angles QS’ QI and QE' For such a calculation the look
angle of the antenna must be taken into account and average gain must
be calculated from the antenna pattern oriented in space such that
the mainlobe is in the direction of the look angle--that is in the
direction of the satellite. For the case of this study a look angle
of 43° (Os = 47°) is assumed as a reasonable angle for a station in
the United States receiving from a synchronous stationary satellite.

Figure 2.5.1 shows the results of calculating average gain factors
Eé, Ei and Eﬁ for an antenna look angle of 43° and antennas having
varying values of mainlobe gain. It was assumed for these calculations
that yagis will be used for gains up to about 15db mainlobe gain, whereas
parabolas will be used for mainlobe gains of greater than 15db.

The principal difference between yagis and parabolas is the
fact that a yagi has a relatively poor back to front gain ratio. Also,
for increasing gain from something in the order of 3db to 15db there
is very little decrease in the total energy received through the back-
lobe. The principal effect is a redistribution of energy received through
the mainlobe and the sidelobes close to the mainlobe. Since this redis-
tribution occurs within the solid angle QS’ there is no net effect on

the average gain factors Es, GI and GE.
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In the case of the parabola--used for calculating results for
mainlobe gains of greater than 15 db--the back to front ratio is much
better than for yagis. Gain in the mainlobe is achieved by decreasiag
both backloles aad sidelobes including thoss sidelobes which for a

look angle of 43° fall in the solid angle O As gain is increased,

I
a point is reached at which the effect of reducing backlobes and minor
sidelobes has small effect on the energy in the mainlobe or major side-
lobes close to the mainlobe. At this point the curves (for very high
mainlobe gain) flatten out. The principal effect of increasing gain
at high gains is a redistribution of energy from principal sidelobes,

which already fall within the angle QS’ to the mainlobe also in this
same solid angle. This has no effect on average gain factors ES’ EI
and EE because the net effect is little or no change in total energy

received through the solid angles of concern, QS’

The results shown in Figure 2.5.1 indicate the significance of

Q Q
1’ and B

using directional antennas with particular emphasis upon reduction of
effective gain in the direction of earth noise (backlobe) and indigenous
noise. For high angle reception improved performance in rejection of
earth noise and indigenous noise can be realized from antennas having
low back to front ratio and low order minor sidelobes. ES and EE will
not vary significantly with antenna look angle. EI’ on the other hand,
can be significantly less for look angles greater than 80°. This is

because antenna sidelobes at + 90° from the mainlobe can be reduced

easily, whereas, the other sidelobes cannot be so easily reduced for
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3.0 COST VERSUS RECEIVING SYSTEM PARAMETERS

3.1 GENERAL

In evaluating the receiving system's cost relative to required
satellite power and frequency of operation, costs relating to four
distinct parameters of the receiving system have been studied separ-
ately--Cost versus Noise Figure (F), Cost versus Modulation Improvement
(I), Cost versus Antenna Size (Gain) and Cost versus Feeder Loss (L).
In some cases it is difficult to relate a cost component to one of
these parameters independent of the values of the other parameters.

An example of this is the problem of relating cost to improvement
factor independent of noise figure.

Besides the four primary receiver cost factors referred to above,
other factors, which can be considered as secondary cost factors, are
also evaluated., These include the cost of reduction in antenna average
side lobe and back lobe level as well as the cost of mounting the RF
amplifier and mixer at the antenna terminals.-

3.2 METHODS USED IN COST ANALYSIS

3.2.1 General
In determining the cost of the receiver components, the
major sources of information were manufacturers of components which
could be used in a satellite television system, and various research
and development organizations working in related fields. In this way,
first-hand information has been obtained on the present and expected

future state-of-the art in design techniques and the cost of components
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involved in implementing such techniques. This basic input informa-
tion was supplemented, where possible, through reference to equipment
catalogs and other literature.

3.2.2 Manufacturers and Research Groups

To accurately predict the cost of a satellite TV receiving
system that might be used by 1970, it is necessary to predict what
devices will be available by then, what effect these devices will have
upon improvement in reception, and the nature of the market demand
that will exist for these devices. Many of the components which are
used today will still be used in 1970; but changes in market demand,
improvements in materials, and improvements in production processes
can be expected to improve the characteristics and reduce the cost
of these components.

By consulting a number of research and development groups,
fundamental technical information has been obtained regarding expected
new component development, the characteristics of present components,
and information regarding the effect of environmental parameters on
Propagation and reception. By consulting electronics manufacturers,
fundamental information has been obtained on the cost of produced com-
ponents and the effect of market demand on cost. Manufacturers of large
quantities of components were consulted to ascertain the effect of large-
scale production on the cost of a component, and to ascertain what it
would take in the way of demand to realize large-scale production or
low-cost production of components which are not currently mass produced.
An examination has been made of the trend in demand and cost of those

items that show promise in the reception of television from satellites.
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The manufacturers and research groups who were asked for
advice were, on the whole, very willing to participate in the program
and were extremely helpful, A great deal of interest was shown in the
subject under study. Without the cooperation of such groups, a mean-
ingful report on costs could not have been assembled. The groups con-
sulted directly for comment and discussion are listed below:

Andrew Corporation

Oak Manufacturing

Zenith Radio Corporation

Standard Kohlsman

University of Illinois EE Department
The General Electric Corporation
Radio Corporation of America

Texas Instruments

Hughes Aircraft

Arthur D, Little Company
Channelmaster Corporation

Technical Appliance Corporation
Wheeler Laboratories

Dorne and Margolian

Airborne Instruments Laboratory
International Telephone and Telegraph
Microwave Associated

Sage Laboratories

Sylvania

Raytheon

Lincoln Laboratories

Massachusetts Institute of Technology, EE Department

If time had permitted, other groups would have been contacted. In this
report, specific data points are not related to their sources. Most
points are obtained from a combination of sources.

3.2.3 Literature and Catalogs

For some components, information regarding cost was obtained
from equipment catalogs. The information regarding feeder cost falls
into this category. Due to the fact that the major cost of feeder lines
is the cost of material, and the basic structure is not expected to change,
significant cost changes are not expected to occur due to increased market

demand .
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Literature surveys and analyses were made to determine the
advantages of possible modulation techniques in terms of improvement and
the effects of various environmental factors.

3.2.4 Methods of Extending Cost Information

Cost information from the various manufacturers was usually
based on some anticipated market demand. Due to the variation in exist-
ing market demand from component to component, the quantity upon which
the cost estimates were based varied widely from 1 to 106. For our
purposes, it is necessary to determine the cost in quantities up to
106. In some cases this means a lengthy cost projection.

The basic method for cost projection which has been used
is the application of learning curves or improvement curves. This
method was first applied to the aircraft industry in World War II and
is currently widely accepted as a cost projection basis by the micro-
wave industry.

Learning curves are based upon a very simple principle.
This principle assumes that if the cost to produce the n th item is
X dollars, the cost to produce the 2n thitem will be KX dollars where
0<K<1, and K is determined by the particular production process. For
instance, some manufacturers of microwave equipment use K = .85, The
learning curve process is illustrated in Figure 3.2.1 where the cost
to produce the first item is $1000 and K = .85. The cost to produce
Item 2 is $850 or .85 ($1000). The cost to produce Item 4 is then

(.85) ($850) or $722 and so on.
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If the market is such that we can anticipate selling Y
units, each unit can be sold at the average production cost of the Y
units which is just the area under the improvement curve from one to
n divided by n. This average value is readily available in tables and
will be used as the price for a certain component wikh market demand
for n units. It can be shown from the principle of the learning curve
that the average price curve for quantity n is parallel to the unit cost
curve, but above it. If either the average cost curve or the unit cost
curve is known, the other can be easily determined.

The learning curve technique has been used in this study.
K for a specific component has been determined by obtaining the cost

of an item for two specific quantities n, and n, and drawing a straight

1 2
line plot on log-log plot as was done in Figure 3.2.1. This establishes
the value of K and serves as a basis for further cost projections.

It should be pointed out that the use of learning curves
in cost projections has limitations. If the production process can
be assumed to change drastically for high quantity demands, then the
learning curve must be adjusted at this production break. Nevertheless,

it is still a helpful tool in cost projections.

3.2.5 New Techniques and Components

In the investigation of components to be used in a satel-
lite TV receiving system several uncertainties were uncovered. These
are mainly in regard to the performance characteristics of these com-
ponents. This makes an accurate cost analysis of these areas very

difficult although this type of problem can be anticipated in any
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Projection of the state of the art., In handling these uncertainties
and placing values on them, the rate of development of the state of
the art is considered and applied to project these values. Where this
cannot be done, the range of uncertainty is noted and a fairly "safe"
characteristic is used,

Examples of components whose characteristic definition
is uncertain for the period 1970 are given below:

Transistors - the upper frequency limit and possible
noise figure at this frequency limit

Schottkey Barrier Diodes - the noise figure of a re-
ceiver using this diode as a first stage
and the diode's stability

Gunn Effect Oscillators - whether or not these oscil-
lators can be produced to oscillate at
a predetermined frequency.

The above are three devices which can, depending on

their characteristics, alter the price picture considerably.

3.3 COST VERSUS RECEIVER NOISE FIGURE (F)

3.3.1 General

The following discussion of receiver noise figure and
its associated cost is considered for three frequency ranges -- VHF,
UHF, and microwave frequencies, respectively. The reason for this
separation is that the type of available hardware changes in going
from one of these frequency ranges to the next and the demand for
components change. It is felt that the ranges of desired noise figure
can be developed on a common basis over each of these frequency ranges.
Due to the difference in current demand for the components in each

range, the method of cost projection will be different,
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The noise figures discussed in the following sections
will be for the receiver only and will not include contributions from
transmission line losses. Receiver noise figure and transmission
line loss are combined in the system equation to give the overall

noise figure.

3.3.2 Cost Versus Receiver Noise Figure at VHF (100 Mc/s to 300 Mc/s)

A practical limitation on the improvement that is obtain-
able by reducing the noise figures of VHF receivers is the high cosmic
noise temperature and large value of indigenous noise that exist in
the VHF frequency range. As a result of these effects, extremely low
noise receivers will not lower the overall system noise to any signifi-
cant extent. Improvements beyond a noise temperature of 2 db ( effective
temperature of 170°) will go practically unnoticed.

As a cost base for the VHF band, present VHF-TV tuners
may be used. A typical block diagram for such tuners is shown in
Figure 3.3.1. The input signal goes through a preselector and amplifier,
and then is mixed down to the IF frequency. At these frequencies, it
is easy to obtain high amplification with the amplifier, The contribu-
tion to noise figure from the mixer is therefore neglibile as can be

seen from the chain equation for noise figure.

F,-1 Fy-1 F -1
F=F + t o ot t
1 172 172 n-1

where

Gn = gain of nth stage as a ratio
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% pPower ratio at input of n th stage

S .
N Power ratio at output of nth stage

The noise figure F can also be expressed as:

S
ﬁl power ratio at input to receiver
F = L
So
§_ Ppower ratio at output of receiver
o)
where
Ni=KBT
o
K = Boltsman's Constant = 1.38 X 10-23
B = Bandwidth of receiver
T = 290°K
o

Noise figure expressed in db is 10 log F. Considering the amplifier
and preselector as making up the first stage the gain is 25 db, or
about 300. The second term is then negligible.

The overall noise figure of a present VHF tuner is from
5.5 to 7.0 db, the range being associated with production and assembly
variations. The amplifier has a noise figure of about 2 db to 3 db.
Loss in the preselector accounts for the higher overall noise figure.
When the receiver is switched to UHF operation, the VHF tuner is utilized
as the first IF section of the receiver. When this occurs, the VHF
tuner is switched to channel 1 which is at 45 Mc/s. The noise figure
of the VHF tuner is optimized at channel 1 for this operation and has

a typical value of 2.6 db, This illustrates the noise figure which
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can be achieved if the present tuner is optimized for noise figure at
a particular frequency. This then gives another point on the VHF noise
figure curves as shown in Figure 3.3.1.

A receiver for satellite television could have two basic
configurations. The first is a VHF tuner which could be used for satel-
lite or ground transmissions with the noise figure optimized at the
satellite frequency, or it could have a separate tuner which is opti-
mized for satellite usage. The cost of either tuner would be about
$6.00, which is the current VHF tuner cost to the assembler., In the
latter case the total tuner cost would be about $14.00.

Another point on the VHF curve may be developed by using
an available low noise device which is currently high priced, but by
1970 will be moderately priced. This device is a transistor which
currently sells for $5.00. It is expected that after a two-year period
this device will sell for $0.75 if a reasonable demand occurs. This
Projection is based on the type of cost variation with time that pre-
viously developed transistors have experienced. The main characteristic
of the transistor cost variation curve is that if a transistor costs
X dollars when it first comes on the market, it can be expected to
level off at a price of $0.15X after a two-year period. This is
illustrated in Figure 3.3.1 for this particular transistor. With the
cost of $0.75 by 1970, the addition of this transistor to the current
type of VHF tuner would cost an additional dollar. This transistor
has a noise figure of 1.0 db. In an optimized tuner, this noise figure

can be realized to within 1.0 db--based on previous design experience--
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giving an overall noise figure of 2.0 db. Due to the availability

of VHF tuners of acceptable quality, the cost of the tuners should
vary little with the quantity used in the satellite television system
since it will not appreciably affect the market.

A possible configuration is to mount the amplifier at
the antenna in order to reduce the contribution of line loss to the
overall receiver noise figure. The added cost of doing this is $5.00.
This includes the weather-proof casing for the antenna, a choke coil
for picking off the D.C. power from the down line to operate the ampli-
fier and the power supply. This configuration is only practical if
a transistor amplifier is used,

The cost of VHF tuners has been developed on the basis
of a large quantity demand. The modifications to the present tuner
which will improve the noise figure are not major modifications and
should not affect the VHF tuner market significantly. The cost of the
tuners should not change with quantity.

3.3.3 Cost Versus Receiver Noise Figure at UHF (300 Mc/s S f

< 1.0 Ge/s)

Due to the relatively small values of environmental noise

at the UHF frequencies, low noise devices may be advantageous. For
this reason cost versus noise figure will be developed over a wide
range of noice figure (F), beginning with the currently available UHF
tuners.

The present UHF tuner is considered a basis for obtaining
cost versus noise figure for large-quantity production tuners. Modifi-

cations to the tuner and changes in the production technique which
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would reduce the noise figure are considered. Based on production
experience and cost of necessary materials, an attempt is made to asso-
ciate cost with these improvements. In this manner, a cost versus
noise figure (F) relation is defined over a range of F,.

The current UHF tuner configuration, which is used by
all major tuner manufacturers, is shown in Figure 3.3.21. Figure
3.3.2 also shows the tuner manufacturer's selling price which is the
receiver manufacturer's cost for the UHF portion of the tuner, for
specific modifications to the present UHF tuner arrangement, and the
resulting noise figure for the UHF branch of the tuner. These costs
do not include the VHF (Channel 1) equipment shown in the block dia-
gram,

The noise figure estimates from the various manufacturers
varied by +0.5 db from the value of 10 db for present tuners shown
in Figure 3.3.2. For the other configurations the value of F is a
typical value.

In some cases the optimum noise figure (F) can be lower.
The indicated F is for the particular frequency range for which the
tuner is optimized.

Asshown, present UHF tuners have an F of 10 db at the
frequency for which they are optimized., Although the 10 db figure
occurs at the low end of the UHF region and rises to 12-13 db at the

higher end of the band, it could be designed to occur at any frequency

1When the tuner is in UHF operation, the output of the UHF branch
is fed into the input of the VHF section, which in turn acts as a first
IF. Currently, the UHF sections cost about $4.00 and have noise figures
of 9-10 db, while the VHF tuner costs $6.00 and has a noise figure of
5~6 db. The proposed modifications will be to the UHF sections.
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up to 1.5 Gc/s without increase in cost. To reduce F, several alterna-
tives are available. Among these are the following:

1. Better selection of components in the production
process

2. Use of a Schottkey Barrier Diode as a mixer

3. Use of a transistor amplifier before the mixer

4. Use of a parametric amplifier before the mixer.

Through better selection of components, an improvement
of 2 db in F can be achieved. Since the cost of components is small,
the increase in cost to achieve this is only $1.00. The second step
in the noise figure improvement process is the incorporation of an
RF amplifier using a currently available transistor. The noise figure
of an amplifier depends on the dynamic range of the receiver. If the
tuner is used solely for satellite television, a wide dynamic range
would not be required. This is due to the stability of the radiated
signal. A noise figure of 5 db is possible with a limited dynamic
range receiver. For a wide dynamic range receiver which would be the
case for a tuner serving the dual purpose of satellite television and
ground televison a 6.5 db receiver is possible. The increased cost
of an RF amplifier would be about $2.50,

Improvement can be attained without an RF amplifier if
a Schottkey Barrier Diode is used as the mixer. For noise figure pur-
poses, this diode can be considered a perfect diode, such that the
noise figure from the diode through the IF strip is the noise figure
of the IF alone. Assuming that by 1970 the noise figure of Channel 1

(the UHF IF strip) will be 2.0 db the noise figure of the receiver will
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be 5.0 db for a wideband receiver and 3.0 db for a narrowband receiver.
This is due to the fact that the preselector adds 3 db to the noise
figure for the wideband case but only 1.0 db for the narrowband case.

Using a transistor with a 1.0 db noise figure, as was
used in the VHF tuner costing, with the RF amplifier, further improve-
ment can be achieved. Due to the high cost of this particular transistor,
it would increase the tuner cost by $1.00 over the amplifier using
the currently available transistor. The achievable noise figure would
be 2.0 db for the narrowband case and 4.0 db for the wideband case.
If this tuner were optimized for noise figure alone, the overall tuner
noise figure would be within 0.2 db of the transistor itself giving
a noise figure of 1.2 db with an additional $2.00 cost.

For further reducing the noise figure, a parametric
amplifier must be used. An uncooled paramp at 1 Gec/s can achieve a
noise figure of 0.81 db. Costing information for this particular paramp
is available to quantities of 10,000. Extending this cost using a
85 per cent learning curve to a quantity of one million yields a per-
unit price of $225.00.

The effective temperature for a noise figure of 0.81 db
is 60°K and further improvement can only be achieved at far greater
expense.

3.3.4 Cost of Microwave Tuners (1 Ge/s - 12 Gec/s)

Due to the different existing quantity demand for micro- *’J
wave components than the quantity demand for UHF-VHF tuners, a different

cost basis will be established. Considering the many different types

50



of components which are used at the microwave frequencies, and the

numbers of these various components which are sold, they can be com-

pared on a cost basis most accurately for very small quantity demands,
Some components have been accurately priced for large quantities, but
others have not. All microwave components, however, have established
prices for small quantity production.

The cost versus noise figure curve will be developed
for a quantity of one. Cost projections will be made using an 85 per
cent learning curve. In many cases, the cost information was obtained
for quantities greater than one. This cost information was then pro-
jected back from that quantity to a quantity of one on the 85% learn-
ing curve.

Most microwave manufacturers agree on the 85 per cent
learning curve as a basis for cost projection. This was verified in
costs for a particular item for different quantities. When plotted
on the log-log plot the points determined, for most cases, an 85 per
cent learning curve.

The basic configuration for the microwave receiver is the same
as that for the UHF tuner--a preselector, possible RF amplifier, mixer
first IF amplifier and local oscillator. In some cases for very low
noise devices, a second low noise amplifier will be required so that
the low noise figure of the first amplifier may be fully realized.
These are the components which are costed for the receiver noise figure,

The various components which are used to generate the cost

versus noise figure curve, will be discussed in sequence, starting
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N

with those components which yield a high noise figure and progressing

in the direction of reduced noise figure, Frequent reference will be
made to Figures 3.3.3 and 3.3.4 which show the cost of tuners (expressed
in terms of these noise figures) versus cost and the types of receivers
which are used to give a particular noise figure at different frequencies.

Local Oscillator and First IF Amplifier

A necessary item in any superheterodyne receiver is the
local oscillator, and at microwave frequencies, they are expensive.
Present local oscillator design techniques include a transistor oscil-
lator at the VHF range followed by a varactor chain or step recovery
diode. The highly non-linear action of the diode produces harmonics
of the oscillator fundamental and one of these is used as the local
oscillator signal. Step recovery diodes, or snap diodes, appear to
be more efficient harmonic generators than varactor diodes. The above
technique is usually used when crystal control of the local oscillator
is desired,

A second method is to build the oscillator to operate
at a high enough frequency such that the fundamental of the oscillator
or one of its harmonics can be used directly as the local oscillator
signal. However, a local oscillator of this nature, with the oscil-
lator power which can be achieved from transistors, cannot be crystal
controlled.

By 1970, due to anticipated improvement in solid state
devices, local oscillator design should change significantly. This

is due mainly to the increased RF power output of solid state devices
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at the microwave frequencies. One to ten milliwatts of local oscillator

power are required to satisfactorily drive a diode mixer. By 1970,

this power should be available from a single stage oscillator, either

in the form of a signal at its fundamental frequency or a harmonic.

However, only at the low end of the microwave range could an oscillator

of this type be crystal controlled. Improvements in Silicon transistors
| should also reduce the number of varactor elements required for crystal

controlled oscillators.

For silicon transistor local oscillators, the cost at
1970 for one is given below along with the cost of the first IF amplifier

which is a transistor amplifier.

Local First 1IF
Frequency Oscillator Amplifier
(Ge/s) Cost(dollars) Cost(dollars)
2 300.00 200.00
4 400,00 200.00
6 500.00 200.00
8 700.00 200.00
10 900.00 200.00
12 1100.00 200.00

Balanced Mixers

} A balanced mixer has two diodes which are driven by the

i same local oscillator. They have the advantage that the signal port
and the local oscillator port are isolated. No signal is lost through

} the local oscillator line. A second advantage provided by the balanced
mixer is that input noise components beating against other input noise
components to enter the IF channel are cancelled out due to the phase

opposition of the circulator.
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The basic mixer structure is $40.00, the diodes cost
between $10.00 a pair and $50.00 a pair depending on whether or not
their characteristics are accurately matched. For unmatched diodes
a noise figure of 13 to 14 db is obtained. For the matched case a
noise figure of 9-10 db is obtained. The cost of the balanced mixer
with the local oscillator and first IF amplifier is shown in Figure
3.3.3. Figure 3.3.4 shows the noise figures which can be obtained
at the different microwave frequencies.

Presently Available Single Ended Mixer

Single ended mixers have a single diode as the non-linear
element. The major disadvantage is that attenuation must be provided
at the local oscillator to isolate that port from the signal port.

This attenuation reduces the local oscillator power at the mixer.

This requires more basic local oscillator power. Costwise the single
ended mixer is comparable to the balanced mixer. The increased local
oscillator requirement leads to an increase in the cost of the overall
configuration.

Schottkey Diode Mixer

The Schottkey diode which was discussed in Section 3.3.2
can be used at the microwave frequencies. An improved noise figure is
available due to its low value of insertion loss. This mixer as well
as the others discussed can be used up to 12 Ge/s.

Requirements for local oscillator power should be the same
as for the present single ended mixer. The mixer receivers which have

been discussed do not have an amplifier before the mixer.
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Transistor Amplifier

The addition of a transistor amplifier to a well designed
balanced mixer stage will reduce the noise figure further., The noise
figure for transistor amplifier receivers shown in Figure 3.3.3, is
based on realizing the noise figure of transistors, which will be avail-
able by 1969, to within .5 db. The upper frequency limit at which
transistor amplifiers can be advantageously used is 6-7 Gec/s.

The cost of the amplifier at different frequencies is:

Frequency Cost of Tramsistor
(Ge/s) Amplifier(dollars)

2 300

4 1,000

6 1,000

This cost plus the local oscillator cost and a $100.00 mixer gives the
total receiver cost.

Tunnel Diode Amplifier

Due to the anticipated availability of transistor amplifiers
at the lower microwave frequencies tunnel diode amplifiers are advantageous
only at frequencies above 5 Gec/s. Tunnel diodes give a noise figure of
4 to 4.5 db at optimum design. A major cost item of tunnel diode ampli-
fiers is the circulator which serves to direct the input signal to the
amplifier, and the output signal from the amplifier (which leaves through
the same port it enters) to the mixer. The tunnel diode amplifier costs
$1600 to $2000 depending on frequency.

Uncooled Parametric Amplifiers

The high cost of parametric amplifiers is due both to the

high cost of components, and the amount of detail which must be considered
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in assembling them., The major cost factors are the circulator, the
high quality diode which is used as the variable reactance and the pump.

To realize the potential noise figure of any low noise
device, the surrounding components must be of good quality, and the
contribution to the overall noise figure from the succeeding stages
must be negligible. This piaces stringent requirements on certain asso-
ciated parameters such as the signal loss in the circulator and wave-
guide and the noise figure of the succeeding stages. The present
limitation to the noise figure which can be obtained with parametric
amplifiers is the quality of the diode. The resistance in series with
the variable capacitance sets the lower limit of the noise figure.1
This will be considered the optimum noise temperature of paramps by
1970. To realize this noise temperature, a low noise mixer configura-
tion or amplifier must follow the paramp.

This optimum design paramp will be more expensive due
to the requirements on the associated equipment.

An alternative to the optimum design paramp is a less
expensive paramp very similar to present models. Improvements in
varactor diodes, pump sources, and circulator loss will lower the

noise figure considerably.

1The quality of varactor diodes is expressed quantitatively in
terms of the cut-off frequency of the diode. Experimental diodes with
an 800 Gc/s cut-off frequency have been built. By 1969 or 1970, diodes
with a cut-off frequency of 1000 Gc/s will be available. The potential
noise figure or potential effective temperature of the parametric amp -
lifier is determined by the cut-off frequency, and with a cut-off fre-
quency of 1000 Gc/s an effective temperature of 35°K at .2 Ge/s is possibie.
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Cooled Parametric Amplifiers

The major cost item of cooled parametric amplifiers is
the refrigerator. Two currently used refrigerators cool to tempera-
tures of 20°K and 4.2°K. The 20°K refrigerator costs $20,000 while
the 4.2°K refrigerator costs $80,000. The refrigerators require
service about three times a year. During the service period the receiver
would be "down" for 12 to 24 hours. With the purchase of additional
parts which can replace the parts which are being serviced, this down
time can be reduced to 4 hours. The additional cost would be $2400
for the 20°K unit and $10,000 for the 4.2°K unit.

The cost to build the paramp itself is much higher for
the uncooled case. The cost of the paramp aione for the 4.2°K unit
is $120,000 and $25,000 for the 20°K unit.

Besides the basic paramp and refrigerator units, metering
equipment is also needed to monitor the operation of the amplifier
and the status of the refrigerator. Combining all costs which must
be considered, the cost of a cooled paramp is high--$40,000 for the
20°K unit and $240,000 for the 4.2°K unit. The effective receiver
temperatures which are obtained at this price are iisted as a function
of frequency on Figure 3.3.3.

3.4 COST OF MODULATION IMPROVEMENT (CI Vs. I)

3.4.1 General
As previously mentioned, it is sometimes difficult to
separate that cost of a receiver which is directly associated with
noise figure from the cost to obtain a certain modulation improvement.

The best example of this is the fact that improvement systems are
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invariably wideband with respect to the baseband. The improvement

can be thought of as a power-bandwidth trade-off. It is much more dif-
ficult to obtain a certain noise figure in a wideband receiver than

a narrowband receiver. Usually there is a bandwidth threshold--expres-
sed as a percentage of the band center frequency--beyond which differ-
ent design tgchniques are used, and this leads to an increased cost.

In the frequency range under consideration (100 Mc/s
to 12 Gc/s) there are considerations other than cost which limit the
bandwidth to be used in a satellite television system. Of particular
importance are the allocation and spectrum utilization problems. It
is practical to assume a certain bandwidth limit. It is assumed herein
in discussing modulation systems, that a 5 per cent per channel band-
width limitation is reasonable. No modulation system is considered
which will require a bandwidth B greater than 5 per cent of the operat-
ing frequency (f.). It will be further assumed that a bandwidth
selection within this relatively narrow limit will not influence
noise figure cost. Above 1 Gec/s, a 50 Mc/s system is less than 5
per cent of the center frequency.

In the discussion to follow, it will be shown that for
most frequencies other limitations will occur before the bandwidth
limitation.

In determining cost versus improvement factor (CI vs. I),
it is first necessary to compare the different available modulation

systems and to choose the type of modulation system which will give
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a particular improvement at a minimum cost. This cost then represents
the minimum cost for a specified improvement,

Appendix C presents a comparison of PCM and FM for appli-
cation to satellite television. It is proven that FM is the most
economical system.

The FM improvement is given by the relation
(s/my, = 3¢ (/Mg 3.4.1

where M is the modulation index and (S/N)Ith

to-noise considering only the noise in the baseband b. The total RF

is the pre-limiter signal-
bandwidth is

= b 4.2
Bpp = 2 (L + M) 3.4

It is shown in the appendix that
s/ = @f + 3f) s/, 3.4.3
This defines the modulation index to be used for a given signal-to-

noise threshold (S/N)in where (S/N)in includes the noise in the total

RF bandwidth.
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3.4.2 FM Improvement Characteristics

Equation 3.4.3 gives the value of modulation index (M) which
will give maximum improvement for a desired output signal-to-noise ratio
for a given threshold, while Equation 3.4.2 gives the necessary bandwidth.
These relations are shown in Figure 3.4.1 along with the 1.5 M2 improve-
ment curve. In using Figure 3.4.1 the top curve showing (S/N)o/(S/N)in
should be used with the values on the left ordinate scale. The lower
curve showing (S/N)o/(S/N)RFb should be used with the ordinate scale on
the right. The abscissa scales showing modulation index and RF bandwidth
B are common to both curves. For a given (S/N)o to (S/N)in threshold
ratio the modulation index, which corresponds to maximum improvement,
can be determined using the top curve. From this value of modulation
index the maximum modulation improvement can be determined using the lower
curve. All values used on the ordinate scales in this Figure are ratio
values, not db.

For a standard FM receiver with a 12 db threshold (ratio of
15.8) and a desired output of 32.3 dbl (ratio of 1.70 X 103) the improve-
ment ratio is 107.2 or 20.3 db. The associated modulation index and
improvement factors are 3.03 and 14.0 (expressed as a ratio), respectively.
If threshold reduction techniques such as a phase-locked loop or frequency
modulation feedback are used, a lower threshold and greater improvement
can be realized. The current threshold limit which has been reached is
4 db. However, it will probably be 1970 before this threshold is consist-

antly realized. Stability problems in the feedback loop make current

1
A television signal to triangular noise ratio of 32.3 db will give
the same quality picture as a signal-to-flat noise ratio of 40 db. FM

can be considered as also providing a noise weighting improvement of 7.7
db or 6.0.
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systems quite complex and in some cases undependable. There is a second
threshold effect which should be considered at this time and that is the
threshold at which the output noise spectrum is no longer triangular.
This threshold is about 6 db at which point intermodulation occurs and
the low frequencies in the output are filled with the intermodulation
noise and the M noise weighting improvement is not so great. For this
reason a threshold of 6 db will be associated with the phase locked
loop systems.

The improvement for the 6 db threshold is determined from
Figure 3.4.3 by starting at 32.3 db - 6 db = 26.3 db or 427 on the (S/N)o
to (S/N)in threshold axis; the modulation index and improvement factor(s)
are 4.95 and 37.0, respectively.

The total improvement in using PM is then the product of
the modulation improvement factor and the noise weighting improvement
which is 14 x 6 = 84 for a standard FM system, and 37 x 6 = 222 for a
feedback system.

The cost of the intermodulation improvement will include
the cost of the IF amplifiers, limiter-discriminator and the feedback
loop for the threshold reduction case.

For the standard FM system, the cost can be established by
relating the cost of the needed components to the cost of stages of a
mass-produced UHF or VHF tuner. In mass production the cost of tuners
can be calculated on the basis of a cost of $2.00 per stage. The standard
FM receiver is fairly uncomplicated and this method of cost estimating
should be very accurate for quantities of a million. The standard FM

system would require three IF amplifiers and a limiter-discriminator stage.
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The receiver manufacturer's cost would be $8.00 and the purchase price
about $32.00. If this is projected back on an 85 per cent learning curve
to a quantity of one, the cost would be $843.

Estimates on the cost of a feedback system in mass production
vary widely. It was felt that the extreme linearity requirements in the
feedback loop and other system parameters, which must be closely controlled,
would limit the reduction in cost which comes from mass production. A
fairly safe estimate would be about $90.00 purchase price. When extended
back on an 85 per cent learning curve, this becomes $2,370 for a quantity
of one. At preseat the cost of a feedback system would be considerably
higher due to the fact that a great deal of engineering effort is used
in the development of a feedback system. By 1970, the characteristics of

FM feedback systems will be much better known and their design standardized.

The cost of a single unit will go down due to this.

3.5 COST VERSUS RECEIVER ANTENNA ARFA (GAIN) (CAVS. AR)
3.5.1 General

Arriving at a cost versus performance function for antennas
that could be used in a system for receiving a television signal from a
stationary satellite may be approached from several directions. For
purposes of solving the one-way transmission equation, the ideal way to
present cost information on antennas would be to plot antenna cost versus
antenna effective receiving area. However, the realities of antenna
design and utilization throughout the frequency range of interest dictates
that gain be the primary performance characteristic of an antenna. Gain
and effective area are related by the relationship G = %Eé, where A is

the effective aperture and A is wavelength. Wavelength A is equal to
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C/f where C is velocity of electromagnetic waves in space and f is fre-
quency. The fundamental cost data have been developed as a function of
antenna gain.

3.5.2 Antenna Types

In the frequency range 0.1 to 12 G/s, a great diversity
of antenna types may be used. This results from the fact that the wave~
lengths of the frequencies under consideration vary from relatively
large, 3 meters, to fairly small, 3 cm, magnitudes. The size of the
wavelength determines the best mechanical structure which may be used
for efficiently capturing the desired signal. At the lower frequencies,
100-900 Mc/s, it is more efficient to use Yagi-like structures, having
elements spaced appropriate fractions of wavelength apart, while at the
higher frequencies the small wavelengths permit a parabola of mesh of
spun aluminum to be more efficient.

Although the Yagi and parabola are the two major types of
antennas used, there are a number of hybrids which have been developed
for special purposes and may prove feasible for this application. These
include cylindrical parabolas, reflectarrays, and disk rods. Figure
3.5.1 gives an indication of the types of gains which may be achieved
at different frequencies with a variety of presently available antennas.
The largest antenna represented is a fifteen-foot parabola, as this is
a break-point for antennas of relatively simple construction. However,
this does not preclude consideration of larger antennas. The antennas
in this figure are representative of the median quality antenna in each
category, since it is unrealistic to consider the highest quality antenna

available. However, it is important to evaluate the relationship
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between cost and the different antenna parameters which determine
quality. For example, the performance of a parabolic antenna may be
influenced by type of feed, blocking factor, and dish tolerance; but to
achieve high efficiency, low blocking and tight tolerance may be very
costly and not really necessary.

Therefore, this study has endeavored to ascertain the
"break-points" in the cost versus quality relationship which will give
maximum quality for the least amount of cost.

3.5.3 Antenna Quantity

Another major area of investigation important to evaluating
cost, besides quality and type of antenna, is quantity. The variables
to be considered here are: type of antenna, material of construction,
and demand. 1In other words some types of antennas (such as the Yagi)
presently being manufactured for home consumption, are already being made
on a mass-produced basis. Quantity versus cost for different antennas
is shown in Figure 3.5.2. The cost of Yagi and other types of single
antennas used for VHF or UHF are shown as a family of parallel straight
lines at the bottom of the Figure. The different lines account for
antennas of different gains. The cost of these types of antennas would
not appreciably decrease if they were mass-produced in greater numbers.
On the other hand, very large antennas costing hundreds of thousands of
dollars for one would realize an appreciably large percentage decrease in
cost if they are made in quantities of tens and hundreds. However, this
large percentage decrease will level-off somewhere between one hundred
fifty and two hundred. This trend is particularly noticeable for smaller

parabolas, 2-15 feet in diameter, where there is only a small percentage
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decrease in the cost for quantities between one and one hundred fifty,
and constant cost after two hundred.

The cost breaks for different quantities may be explained
by differences in manufacturing processes. If antennas are made in small
quantities, they are virtually custom made for a particular purpose.

When several hundred of a particular type are made, a certain amount
of mechanized mass production is possible, but it is still too costly
to invest in a dye-cast or elaborate molding process. Most "standard

parabolas" are in this category, and are made from "

spun” aluminum. This
explains why the cost of parabolas manufactured in hundreds have a cost
leveling at one hundred fifty.

Not until demand indicates a requirement for manufacturing
thousands of antennas will there be a major cost break. The demand for
thousands will permit the investment in automated mass-produced techni-
ques which will result in an appreciable decrease in cost per individual
antenna. For example, two-foot parabolic antennas could probably be
stamped out at a cost of $.25 apiece. Such stamping techniques are
already being employed in the home television antenna industry; conse-
quently, added demand in this area would not effectively decrease the
present cost per item. In general, as demand increases, the percentage
of an antenna cost reflecting development and labor decreases, and the
final limitation is determined by cost of material. Therefore, it is

not until parabolas are made in thousands that plastic becomes feasible.

3.5.4 Gain Versus Cost Curves

The basic gain versus cost curves are plotted in Figures

3.5.3, 3.5.4 and 3.5.5. The data on these curves were derived from
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information obtained from over ten major manufacturers of antennas. No
point on these curves was determined solely on the basis of information
obtained from one manufacturer.

The top figure in Figure 3.5.3 shows a set of graphs de-
picting the cost function for presently available broadband antennas in
the VHF frequency regions. The highest gain feasible in the upper VHF
band using a single antenna is 15 db. This would be considerably higher
in cost than shown in Figure 3.5.3. 1In this band the Yagi construction
gives the best gain for the price paid. There are various "V types
of antennas available; however, they evolve principally for use in
urbanized areas having strong television signals from local stations.
They present little more than a O db termination to the transmission
line, and consequently, may be ruled out for satellite application, as
there are antennas of comparable cost which provide appreciable gain.

In the UHF band the wave lengths are such as to permit
optimization of the Yagi technology for television reception. These
frequencies, and especially the higher ones, are particularly well suited
for getting the largest gain/dollar ratio for receiving antennas avail-
able in the present commercial market. This is evidenced by the bottom
figure in Figure 3.5.3. The points on this graph show not only wide
variation in gain/dollar ratios, but also in type of antenna configura-
tion. The configurations include bow and corner reflectors, Yagi, and
cylindrical and circular ribbed parabolas. All of these antennas, as
well as all of the VHF antennas in the Figure above, are constructed so
as to provide reception over the entire frequency band in which they
operate, i.e., VHF-low, 54-88 Mc/s; VHF-hi, 174-216 Mc/s or UHF, 470-890

Mc/s. 1In order to do this, performance sacrifices have been made to
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obtain a relatively constant gain over the entire band. However, because
of the physics of antenna design, this is impossible to achieve; therefore,
the gain figures on these graphs represent median values (that is, the
average gain across the band and not the gain at the middle frequency) .
The variation in this median value is +1.5 db, with the highest gains
being obtained at the highest frequencies.

The complete picture of the relationship between antenna
gain, cost and frequency is presented in Figure 3.5.4. The curves in

this Figure were derived for the optimum gain/cost ratio for each

frequency. The type of antenna employed at a particular frequency to
obtain a particular gain may vary. In general the low values at the
low frequencies are for Yagi type, and the values for the higher fre-
quencies are for parabolas.
3.5.5 Parabolas

The theory and design practices for the parabola, in con-
trast to the Yagi, are very well understood. Consequently, the present
state-of-the-art of parabolas includes a number of sophisticated antenna
systems which have optimized the performance of a parabola for a particu-
lar application. The majority of these applications are military and
have demanded tight, expensive, performance specifications. The factors
which must be specified when designing a parabola, which are critical
insofar as determining ultimate cost, are listed in the following table,

along with comments on the relevance of their design importance:

75



PARABOLA CHARACTERISTICS

Gain: Will determine amount of transmitter ERP and is dependent
on a number of other design factors.

Feed: The most important design consideration, as it will deter-
mine the nature of the current distribution over the para-
bolic surface, and ultimately the maximum obtainable gain.

Efficiency: Dependent on current distribution and directly related
to gain; the less efficient, the less gain; average
efficiency and easily obtainable is 50 per cent.

Side Lobe Important when antenna is located in noisy enviromment,

Level: since this characteristic may severely increase the noise
temperature of the whole system and impair the antenna
performance, thereby necessitating an increase in trans-
mitted satellite ERP.

Blocking Determined by feed configuration; contributes to system
Factor: losses, and increases noise temperature of antenna.
Antenna Is extremely important as noise temperature of receiver
Temperature: approaches that of antenna; TA becomes the limiting factor.
Frequency: Determines the requirements for dish tolerances, and

consequently the method of parabola construction: spun
aluminum, wire mesh, honeycomb plastic-aluminum or
aluminum tubing. The lower the frequency, the less
stringent the tolerance, but the higher the frequency
the greater the obtainable gain with a fixed diameter
antenna.

In view of the above considerations the following observations
are relevant based on investigations carried out in this study:

1. The tolerances necessary for a 50 per cent efficiency are
easily obtainable with present technology. Once the desired electrical
properties of an antenna have been determined, there will be little deviatiomn
in the performance characteristic of an antenna produced in large quantities.

2. The break-point between the use of a Yagi structure and
some type of parabola is in the 800-900 Mc/s region. After this, wire or

mesh parabolas are used through 3000 Mc/s, and spun aluminum dishs from

this frequency through 12,000 Mc/s.
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3. The types of feeds include dipoles, waveguides, and
numerous horn types; notably, the cassegrain, reflector and hog(offset
feed). The slot dipole feed is the best solution at frequencies in
the range 800-3000 Mc/s, while a waveguide feed is most suitable for
frequencies above 3000 Mc/s. Both of these feeds have a relatively
simple construction and will more than meet the required performance
specification. In other words, these two types of feeds are the types
which best lend themselves to mass production. The horn-type feeds are
most suitable for specialized applications, and best used in conjunction
with a large, more sophisticated receiving system requiring a very low

antenna noise temperature. Different horn feed antennas are compared

on a relative basis in the Table below: *
Antenna Gain/Antenna

Type Temperature Gain/Dollar Noise

(1) ©/9) G/F,)
Multiple horn 20-30°K Excellent Poor
Horn refl. ~ 0°K Poor Excellent
Cassegrain ~ 10°K Fair Good
Hog horn ~ 5% Good Fair

3.5.6 Polarization

Faraday rotation causes the plane of polarization of a wave
traveling through the ionosphere to change its orientation relative to
the antenna from which it was transmitted, thereby causing an uncertainty
as to the polarization of the wave to be received. As a result, unless

certain precautions are taken, the desired signal may be completely lost.
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At high frequencies, 1,000-2,000 Mc/s and above, the Faraday
rotation effect may be neglected. However, below these frequencies
there is a possibility of losing from 3 db to the entire signal, depend-
ing upon the polarization of the transmitting and receiving antennas.
In the event that polarization considerations become important, the
Table below is a guide to the utilization of the four polarization
combinations.

TYPE OF POLARIZATION COMMENTS ON UTILIZATION IN SYSTEM

Transmitter Receiver

Circular Linear Cheap and reliable; at most 3 db
loss; requires no change at receiver.

Linear Linear Cheap, but possibility of losing
100 per cent of signal.

Circular Circular Expensive, less possibility of 100
per cent loss but could happen.

Linear Circular Same performance as first above,
but much more expensive.
The above chart of relative comparisons indicates that the optimum system
would probably use a circularly polarized antenna in the satellite and
a linearly polarized antenna on the ground at the frequencies below
1,000-2,000 Mc/s, as the other configurations are either too unreliable
or too expensive.

3.5.7 Different Parabola and Yagi Configurations

The graphs in Figure 3.5.5 indicate the cost versus gain
relationships for several forms of Yagi and parabolic antenna configura-
tions which appear to be particularly useful for the application under

consideration. The first graph indicates what can be achieved with
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stacked Yagis operating in the TV bands; the second shows what can be
achieved by (1) a relaxed tolerance spun dish, (2) a wire parabola, and
(3) a cylindrical parabola.

It is possible to obtain a higher gain-to-cost ratio with
the Yagis indicated in this graph because there has been a sacrifice in
total bandwidth. The parabolic structures have tolerances which are
all lower than what might be obtained from the usual parabolic dish,
but have not been sufficiently degraded to impair reception of a TV
signal from a synchronous stationary satellite. The end result is a
higher gain to cost ratio.

3.5.8 Novel Antenna Designs

The discussion thus far has centered on antenna systems
which are readily available and well understood in terms of price and
performance. However, to take account of the 1970 time period, the
investigations in this study have encompassed the application of newly
developed antenna systems such as reflectarrays, printed circuit arrays,
and disc-rods. Therefore, at this point the discussion will digress to
analyze these possibilities. The cost versus gain characteristics of
some of these are indicated in Figure 3.5.1, referred to earlier.

The reflectarray is an interesting possibility because of
its relative simplicity of construction and reliability. Because it has
a flat configuration, it could be easily incorporated into the structure
of a building. In large quantities cost could be appreciably reduced.
At present, since there is considerable expenditure in developing the
proper phasing of its elements, the cost is high for small quantities.

The limit on the cost is determined by the material, as the basic
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configuration consists of strings of aluminum dipoles strung together
with proper phasing. The reflectarray has performance characteristics
similar to a parabola having the same area. The best region of operation
is 900-3,000 Mc/s. This antenna's liability is that it is very frequency
sensitive which could hinder its usefulness.

The disc-rod is basically a Yagi-type structure. Its princi-
pal advantage would be to provide an inexpensive method of providing
circular polarization plus high gain at the upper UHF frequencies. This
antenna, and antennas of similar configuration, lend themselves easily
to mass production.

Finally, there is work presently being done in the area of
a phased array printed circuit antenna. This work has been initiated under
the impetus provided by contracts for the large Air Force phased array
antenna, AN/APX-85. The technology being developed under this program
has great promise for revolutionizing the commercial antenna field,
and its implications and applications should be further analyzed.

3.5.9 Cost Minimization Applications

As is explained in Section 4, a computer program has been
developed to optimize component selection and receiving system charact-
eristics to minimize the cost required for a receiving station at
pertinent frequencies throughout the frequency spectrum of interest.

The primary antenna inputs for this program consists of two matrices.

The first indicates the variation of gain at the selected frequencies; and
the second, a variation in cost at the selected frequencies. The points
in the two matrices have been correlated. Again it should be pointed

out that the points in these matrices have themselves been optimized

80




’\.

for gain versus cost; and therefore, are valid inputs for obtaining
a minimum cost receiving station for television.

3.6 COST VS. FEED 1LOSS (C vs. L)

3.6.1 General

The third major element in the receiving station, in addi-
tion to the antenna and the receiver, is the means used to connect the
two. This may take the form of: (1) 300 ohm twin lead; (2) coaxial
cable (polyethylene dielectric, heliax foam dielectric, heliax air die-
lectric, etc.); (3) rigid transmission line; or (4) waveguide. The
particular type of feed used depends on the performance quality desired,
frequency, and the particular application. For example, in a situation
demanding high quality, using microwave frequencies, with the distance
between the antenna and receiver relatively small and unencumbered,
the optimum solution may demand the use of waveguide. However, if the
distance between antenna and receiver were great, or a number of obstacles
had to be circumvented, some type of coaxial cable would provide a better
solution.

3.6.2 Cost Versus Attenuation

The performante versus cost characteristics for the different
types of feeds are presented in Figure 3.6.1. These curves were generated
from data obtained from reliable manufacturers of the pertinent feed
types. The curves shown are'best fit straight lines" to actual data
points relating cost to attenuation. Enough data points were plotted
to establish that a definite exponential relationship (a straight line

on log-log paper) exists between cost and attenuation. This relationship

prevails at all the frequencies within the spectrum of interest.
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The attenuation calculations (computed for 30 feet of line)
were based on the manufacturers' quoted values for each type of feeder
line with the exception of 300 ohm twin lead. The attenuation values for
twim lead, stated by the manufacturers, were for "new" line, without regard
to increased attenuation due to installation. These values were appro-
priately modified to account for aging and increased attenuation due to
environmental effects.

The cost of 30-foot sections of line was based on manufact-
urers' quoted retail prices for minimum quantity sales. Therefore, these
costs represent the most expensive cases. 1In estimating costs for larger
quantities, a 95 per cent learning curve may be used.

An important fact brought out by this compilation of cost
versus attenuation data for different types of feeds is that the feed,
regardless of type, will not contribute an appreciable amount of loss
to the system except at relatively high frequencies. Therefore, the
proportionate amount of dollars spent on the feed system should be small
relative to the receiver and antenna. In other words, the expenditures of
additional dollars in these latter areas will yield greater returns in
terms of system performance.

| These points are further illustrated in Section 4.0,
which discusses the results of determining minimum cost systems at different

[ frequencies.
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4.0 RECEIVING STATION COST

4.1 GENERAL

For a specific sateilite radiated power, there are many sets of
receiving system parameters which would give a desired output signal-
to-noise. If a low noise receiver is used with FM, a small required
antenna gain may result from a solution of the system equation. Whereas,
for the same ERP, if a poor quality receiver is used--a bigger antenna
will be required. It is obvious that if a receiving station is to
be selected for a given ERP, we are free to select a reiated parameter
and pick that receiving station configuration which optimizes or mini-
mizes, as the case may be, that related parameter.

For the receiving station, it may be desirable to minimize RF
bandwidth, antenna size, or system maintenance.

For our purposes we will choose the minimum cost system for a
particular ERP and frequency. There are two available methods to deter-
mine the minimum cost system,

The first is the brute force method of computing the cost for
every workable system, and then selecting the system with the minimum
cost.

The second is to analytically represent the cost function pre-
sented in Section 3, and then using the theory of maxima and minima
with an imposed constraint, solve for the minimum cost configuration.

As a first attempt, the second method was used, but it was felt

that the receiver cost functions did not lend themselives to analytical
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representations easily. This is due to the fact that they are discon-
tinuous functions and have some wide deviations from any simple analytical
representations. It was decided that the first method would provide

the more accurate results. The environmental data from Appendixes A

and B and the receiver parameter cost information from Section 3 were

used with the system equation and the IBM-360 computer to determine

cost versus ERP.

4,2 COMPUTER PROGRAM

The computer program is very straightforward. As is shown in
the block diagram of Figure 4.2.1, the outmost loop in the bliock diagram
increments frequency. After the frequency is selected, the system
antenna polarization configuration is chosen with the associated mis-
match loss.

An initial value of satellite effective radiated power (PT) is
then selected. For each set ot frequency, ERP, and mismatch loss, a
minimum cost system and its cost are determined. This is done as is
shown in the second half of the block diagram. For each set of F (fre-
quency), L(feeder loss), and I (improvement factor), GR (receiver gain)
is determined from the system equation, using the values of environmental
parameters for that particular frequency. The minimum cost configuration
is determined by comparing the cost for each configuration with a minimum

cost register (C ). If the system cost for a particular combination

TMIN

is less than the value in the CTMIN register, the contents of CTMIN are
replaced with the cost of that system, to be compared with the cost of
other systems. After the F, L, I loop has been completed for all combina-

tions, the set of values for the minimum cost system is printed out.
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It should be mentioned that CTMIN is determined for various quantity
demands so that a system is determined for quantities of 106, 104, 102
and 1.

After CTMIN has been determined for one set of selected values
of frequency and satellite power the independent variables f and P
are incremented.

The program is set up to give a complete output set for a specific
indigenous noise level, and when this is completed, the computer reads
in a different set of indigenous noise values and repeats the whole

process,

4.3 INPUT PARAMETERS

4.3.1 General
The two major independent variables are frequency, satellite

power. Values of frequency were selected to cover the frequency range
under consideration with emphasis to those frequencies where broadcast
bands are located., Satellite ERP values were selected to cover the
range 30 dbw to 90 dbw in increments of 10 dbw with additional points
at 45 and 55 dbw. From the system equation, it is seen that bandwidth
and signal-to-noise ratio can be factored out. This will enable inter-
Pretation of the results for systems with bandwidth and desired output
signal-to-noise which are different from those values used in the pro-
gram, namely bandwidth = 4 Mc/s and (S/N)o = 40 db,

4.3.2 Input Environmental Parameters

Table 4.3.1 lists the values of frequency used in the
program. Also listed are the values of the various environmental para-

meters for these frequencies and a ® of 47° corresponding to antenna
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elevation of 43°, Values for the environmental parameters are taken
from the data presented in Appendixes A & B.

4.3.3 Input Receiver Parameters and Associated Costs

Values of F, L and I used in the program were taken from
the data presented in Section 3 for the specific frequencies of interest.

Noise figure values for 200 Mc/s were taken from the VHF
tuner data shown in Figure 3.3.1. For 600 Mc/s, 800 Mc/s, and i Gc/s,
the UHF tuner cost information was used., Values for the remaining fre-
quencies were taken from the corresponding curves for microwave receivers.
Each illustrated data point on the noise figure vs. cost curves was used.

Improvement factor versus cost information used in the
analysis is given in Section 3.4.2. Three types of modulation were
considered for 800 Mc/s and above. These are vestigial (V), standard FM
(F) and threshold reduction FM (T). At 600 Mc/s only V and F were
considered, while at 200 Mc/s only V is considered.

In order to have a manageabie number of possible system
combinations, only four values of feeder loss (L) are considered. These
values are evenly spaced over the loss vs. cost curve with the first
point being the value for an antenna mounted RF amplifier with zero loss.

Antenna information was stored so that when GR (the antenna
gain) is computed, its cost may be determined from the stored information.

4.3.4 Relation to Television Reception

The amount of ERP radiated from the sateliite determines
the amount of field strength that will be present at a particular receiving
station location. This field strength subsequently determines the mag-

nitude of (S/N)0 for a receiver. The quality of a television picture
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is based upon the subjective judgment of the individual viewer. The
best attempts to quantify the relation between receiver output S/N, and
quality of picture was reported in the results of the TASO and New York
City UHF Television studies. The (S/N)o required for a particular
quality of signal can be related to a necessary fieid strength by taking
into account receiving station characteristics. The picture quality
criteria established in the TASO and New York City UHF Television experi-
ments were used in the present analysis. The relationship between
receiver output (S/N)o and quality of picture is tabulated below. A

more thorough discussion of television standards is included in Appendix D,

Receiver Output Signal Quality
(S/N)o (db) Grade Description
44,5 1 Excellent; picture of extreme

high quality

33.5 2 Fine; high quality; interfer-
ence perceptibie

27.0 3 Passable; acceptable quality;
interference not objectionabie

23.0 4 Marginal; poor quality; inter-
ference somewhat objectionable

17.0 5 Inferior; very poor quality;
objectionable interference
Present

———— 6 Unusable; so bad could not
watch it

4.4 PROGRAM RESULTS

Figures 4.4.1 through 4.4.17 present the results of the program

in graphic form. They illustrate the trend in cost versus ERP for the
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minimum cost receiver station. The specific values are for a desired
output signal-to-noise ratio of 40 db and a bandwidth of 4 Mc/sl. These
figures are for the video information only, The costs are for those
Primary components that offect (S/N)O as defined earlier in the report.

Figure 4.4.1 through 4.4.16 are for particular frequencies and
for selected indigenous noise values corresponding to three types of
environment. The indigenous noise values selected represent urban or
city locations (maximum indigenous noise), suburban locations (assumed
to be 10 db below urban), and remove rural (assumed to have no indigenous
noise). The correlation between these indigenous noise values and the
type location may not be exact for ail cases, but use of these settings
will provide a basis for evaluating the relationship between indigenous
noise value and system cost. Four curves aré pPlotted for each frequency
and indigenous noise setting. These curves are for quantities of i,
102, 104 and 106 receivers respectively.

On each figure the system configuration used for each data point
is presented in a table. This shows the configuration which wiil give
the desired output signal-to-noise at the minimum cost. The ERP at
which the system configuration is specified is presented in the first
coiumn of the table, followed by the valiue of noise figure, type of
modulation, antenna polarization system and antenna gain.

Symbols are used for conciseness in the tables to represent the
following:

Modulation

V - Vestigial sideband or standard TV

lMethods will be presented in Section 4.5 which will enabie the
interpretation of the figures for other values of bandwidth and desired
output signal-to-noise ratio.
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F - Frequency modulated TV

T - Frequency modulated TV utilizing threshold reduction
techniques.

Antenna Polarization System

C - Circular polarization used at the transmitter and
receiver

L - Linear polarization used at the transmitter and receiver

L.- Circular polarization used at the transmitter and iinear
polarization at the receiver.

Results for Operation at 200 Mc/s

Figures 4.4.1 through 4.4.3 show the retaii cost of the
pPrimary components of a receiving system as a function of satellite
effected radiated power for the conditions of reception where there is
no indigenous noise, 10 per cent of maximum indigenous noise, and maximum
indigenous noise. Figure 4.4.1 shows the case for the no indigenous
noise situation representing remote rural areas. Figure 4.4.2 shows
the results for 10 per cent of maximum indigenous noise corresponding
to suburban locations. Figure 4.4.3 shows results from maximum indigenous
noise corresponding to urban locations. In all cases the retail cost
of receiving systems as shown represents the cost of only those primary
components which affect the signal-to-noise output of the receiver as
related to noise input. It is these components which have been the
exclusive concern of this study.

It can be seen from Figure 4.4.1 that with no indigenous
noise the cost of receiving system components can be quite reasonable
so long as high satellite power is used. The cost of receiving system

components increases rapidly as satellite ERP is decreased below 60 dbw.
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For the case of 10 per cent maximum indigenous noise as shown in Figure
4.4.2 and maximum indigenous noise as shown on Figure 4.4.3, the cost
of receiving system components increases rapidly as the satellite ERP
is reduced below 80 dbw and 90 dbw respectively. Thus, for urban and
suburban areas satellite ERP's in the order of 80 to 90 dbw will be
required if the cost of receiving system components is to be kept below
$100. In fact, the results indicate that for high values of ERP, that
is above 60 dbw in the no indigenous noise case and 90 dbw in the maxi-
mum indigenous noise case, reception would be possible for primary
components costing less than $20 in quantities of a million. However,
below these values of satellite ERP the cost of receiving systems rapidly
increases to values in excess of $1000.

A significant reason for the increase in cost of receiving
station components for values of satellite power below the critical
values referred to above is the fact that modulation improvement systems,
such as FM, are not considered feasible at 200 Mc/s. Thus, it is neces-
sary to obtain necessary receiving station performance by increasing
the antenna gain as satellite ERP is decreased., The gains required for
vaiues of sateilite ERP below those discussed above are extremely high
at 200 Mc/s.

There are two important reasons for considering only
vestigial sideband for operation at 200 Mc/s. One of these is the
fact that the bandwidth requirement would be greater than 5 per cent
of the operating frequency if modulation improvement systems are used,
The second reason and a very significant one is the fact that at fre-

quencies as low as 200 Mc/s there is a bandwidth limitation caused by
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the ionosphere. While data available on the bandwidth limitations of
the ionosphere are not as complete as desirable there is a sufficient
amount of evidence to indicate that the bandwidth required for FM or
other modulation improvement systems will be excessive. It appears that
bandwidth must be iimited to that required for vestigial sideband (VSB)
if distortion in the ionosphere is to be avoided at 200 Mc/s.

Results for Operation at 600 Mc/s

The results for operation at 600 Mc/s are shown in Figure
4.4 .4 through 4.4.6, As in the case of the results for 200 Mc/s, these
three figures show results for reception at locations having no indigenous
noise, 10 per cent maximum indigenous noise and maximum indigenous noise
corresponding to remcte rural areas, suburban areas and urban areas
respectively.

The results for operation at 600 Mc/s are influenced
very greatly by the fact that at this frequency, as was the case for
operation at 200 Mc/s, there are large noise contributions from indigen-
ous and cosmic sources. A factor of major consideration at frequencies
in the order of 600 Mc/s is the effect of the ionosphere on permissibie
bandwidth., Available data leaves some reasonable question as to whether
or not it will be feasible to operate modulation improvement systems
such as FM at frequencies in the order of 600 Mc/s without significant
distortion., Since the available data is not conclusive on whether or
not such operation is feasible, the results of this study have assumed
that FM will be possible but have also examined the situation if only
VSB is feasible, Thus, in calculating minimum cost systems, the computer

was programmed to evaluate the use of FM improvement relative to use
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of vestigial sideband as one of the component variables. In addition,
to indicate the significance of the results where FM is considered
desirable, curves have aiso been included to show the cost of receiving
system components in the event that vestigial sideband is necessary

to take account of the ionospheric bandwidth limitations of systems
of wider bandwidth. For comparative purposes in those cases where FM
would be the Minimum cost system, the characteristics and cost of VSB
are shown for comparative purposes (for no noise and maximum noise
situations only). The cost of vestigial sideband in such cases is
shown by dotted lines whereas the cost for the minimum cost system
including the use of FM are shown in solid iines.

The results shown in Figures 4.4.4 through 4.4.6 indicate
the possibility of using inexpensive vestigial sideband receiving sta-
tion components for satellite powers that are above 60 dbw with no
indigenous noise and above 80 dbw for maximum indigenous noise. This
is similar to the results for operation at 200 Mc/s. Assuming that it
is feasible to use FM improvement without serious limitation caused by
the ionosphere, then the cost of receiving station components for recep-
tion under conditions of satellite ERP below the critical values just
mentioned can be realized. It will be noted from the results of Figure
4.4.4 for no noise that receiving station component costs of less than
$100 would occur for the use of FM and satellite ERP as low as 40 dbw.
This would be the case for reception in remote rural areas where no in-
digenous noise would exist. For reception in urban areas with maximum
indigenous noise, the satellite ERP required to permit reception using

receiving components costing less than $100 would be a minimum of 60 dbw.
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The importance of the location of receiving stations, and more specifically
tﬁe value of indigenous noise experienced, can be realized from a study

of the results shown for operations at 600 Mc/s. (Figures &4.4.4 through
4.4.6) An important contribution to the cost of receiving stations for
powers below the critical values referred to above is the cost of the
receiving station antenna necessary to achieve the required results,
narticulariy in the presence of indigenous noise.

Results for Operation at 800 Mc/s

Figure 4.4.7 shows the results for locating maximum indigenous
noise and no indigenous noise. Figure 4.4.8 shows results for 107 maximum
noice., The same conclusion can be drawn for 800 Mc/s as for the 600 Mc/s
case concerning the effects of noise on cost at different valiues of
sateliite ERP. For the no indigenous noise case, it becomes advantageous
to use a 1ow noise receiver at higher values of ERP than for the maximum
noise case. A significant break in the cost versus ERP curves occur
at the ERP where FM is used. For operations at 800 Mc/s, threshold FM
is a modulation system possibility and becomes advantageous at about
50 dbw for the maximum noise case. It is noted, that the slope of the
curve changes at this point also as it did for the FM case, but not in
so pronounced a fashion., This change in slope is aiso related to the
reduced antenna demands.

As discussed with respect to the results for operation
at 600 Mc/s, there is a possibility that the ionosphere will cause some
distortion to the use of bandwidths required for FM. However the danger
at 800 Mc/s is less than at 600 Mc/s. This factor is discussed further

in Appendix A,
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Results for QOperation at 1.0 Gec/s

The first section of the report shows the resuits for
this case, Figure 4.4.9 compares the no noise case to the suburban
case (107% maximum noise). Figure 4.4.10 shows the results for the
maximum noise case. As can be seen, very littie cost difference is
shown at the higher ERP's from that determined for operation at the lower
frequencies. However there is not as great a price increase for the
lower ERP's as was determined for the lower frequencies. This is due
to the smaller value of indigenous noise at this frequency. As the
indigenous noise is reduced, it becomes more advantageous to use low
noise receivers, such as paramps. This gives another parameter, beside
antenna gain, which can be used to improve system performance, and
permit operation at lower values of ERP.

Results for Operation at 2.0 Gc/s

Figure 4.4.1i1 compares the no noise case with the indigenous
noise case at 2.0 Ge/s. No cost difference exists, for the two cases,
above 55 dbw. Very little difference occurs for ERP's below 55 dbw.

It should be noted that the curves in Figure 4.4.10 have a very steep
siope. This is because at 2 Ge¢/s microwave techniques are used. Reduc-
tion in ERP may be compensated for largely by increased antenna gain.

Results for Operation on Frequencies 4.0 G/cs through 12 Gc/s

Figures 4.4.12 through 4.4.16 show the cost for operation
at 4.0 Gec/s through 12 Gc/s in increments of 2.0 Ge/s. Above 2.0 Gec/s,
the cost of the systems is independent of indigenous noise. System
costs were computed for approximate values of noise, but this factor

was found to have only a minute effect.
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The cost functions for the microwave frequencies are all
of the same shape. The cost of a system for 6 Gec/s is about 17 per cent
higher than the cost of a 4 Gec/s system requires the same ERP. This
percentage difference is independent of ERP. The cost of receiver comp -
onent at 8 Gc/s is about 50 per cent higher than the cost at 6 Gc/s
for ERP's above 50 dbw and about 20 per cent higher at ERP's below 50 dbw.
The cost of a 10 Gec/s system is 20 per cent higher than an 8 Gc/s system,
and the cost of a 12 Gec/s system is about 20 per cent higher than a 10
Gec/s system.

This increase in cost with frequency is due mainly to
the higher amplifier, local oscillator and antenna costs at the higher
frequencies.

Comparison of Frequencies

Figure 4.4.17 shows a superposition of the results for
a quantity of one at all frequencies, for the maximum noise case. It
1s interesting to note from this comparison that the optimum frequency
depends on ERP. At 90 dbw 200 Mc/s is the optimum frequency. At 70 and
80 dbw 800 Mc/s is the optimum frequency and at 60 dbw, 600 Mc/s, 800
Mc/s, and 1 Gec/s are equally advantageous. From 45 dbw to 55 dbw 1.0
Ge/s is the optimum, and below 45 dbw 2 Gc/s is the optimum frequency.
Figure 4.4.18 shows a comparison of the resuits for varied
combinations of minimum cost systems operating at 1.0 Ge/s. A simiiar
curve was included in Section 1 for 600 Gec/s. This figure shows the
wide spread in cost resulting from a difference in demand between one
and one million. It also shows the importance of using FM for satellite

powers of 70 dbw or less. The effect of indigenous noise is shown to
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be increasingly important as satellite powers of less than 50-60 dbw are
used,

It should be emphasized as has already been described in this
report that there is a need for better data on indigenous noise and
on the effect of the ionosphere in limiting bandwidth. This report
has used the best available sources for both types of data. Because
the resulits for operation at 1 G/cs as shown in Figure 4.4.18 show
the possibility for reasonably low cost receiver components to operate
with sateilites having powers as low as 30 dbw. The validity of noise
data and the possibility for operation with FM bandwidthes at 1 Gec/s
(or less) become extremely important. Above 1 Ge#s both noise and
bandwidth limitations are less severe but equipment components become
more expensive.

4.5 CORRECTION FACTORS TO THE RECEIVER COST VERSUS SATELLITE ERP CURVES

4.5.1 General
For specific appliications of satellite television, different
bandwidths and desired output signal-to-noise ratios may be considered.
An example of this would be a color television application in which the
based video bandwidth would be 6.0 Mc/s instead of 4.0 Mc/s. A second
exampie would be a satellite which is used as a television relay link
in which a(S/N)o of the receiver would be required to be greater than 40 db.
Methods are given below which will enable the interpreta-
tion of the receiver cost versus satellite ERP curves for different

output signal-to-noise ratios and bandwidths.

117



4.5.2 Bandwidth Correction Factor Curve

As the system base bandwidth is increased, more noise enters
the system. For those types of noise which can be classified as white
noise, the noise power at the receiver output increases linearly with
the increase in bandwidth. The increase in output noise must be com-
pPensated for by the same increase in ERP. For those cases in which the

noise is predominantly white the ERP correction factor is given simpliy as

PN gy
PT(4m) 4Mc/s

All noise contributions considered in the system equation
are white noise except the indigenous noise contribution.

As shown in Figure 2.5.3, the amount of indigenous noise
is not linearly related to bandwidth. Figure 4.5.1 gives the ERP cor-
rection to be applied to the results shown for 4Mc/s for those cases
where indigenous noise is predominant. This 4 Mc/s correction factor
is developed from the 10 Kc/s correction factor shown in Figure 2.5.3.

4.5.3 OQutput Signal-to-Noise Ratio Correction Factors

Figure 4.5.2 has been prepared to indicate the correction
factors that might be appiied to obtain relationships between signal-to-
noise output of a receiving installation and required sateliite ERP for
values of signal-to-noise output different from 40 db and for either
vestigial sideband reception or FM reception. It is important to recall
that the signal-to-noise ratio of 40 db used in this study is the value
for excellent picture reception that applies to vestigial sideband recep-
tion only. For a value of 40 db at the output VSB provides excellent

picture quality. The corresponding signal-to-noise output for equivalent
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quality when FM is 32.3 db. The difference of approximately 8 db is
due to the fact that the input noise with FM has different characteristics
from that for vestigial sideband. Thus while the correction factors
shown in Figure 4.5.2 are shown relative to a 40 db signal-to-noise
ratio, it should be kept in mind that to achieve an equivalent quality
for FM, the corresponding value is 32.3 db. With this qualification
the correction factors shown in Figure 4.5.2 permit the determination
of factors to be used in correcting the required satellite ERP for
variations of quality with reference to the equivalent of 40 db signal-
to-noise output for VSB,

The ERP correction required for changes in output quality
(S/N)o is linear with a siope of 1 for VSB. This is shown in Figure
4.5.2 by thecurve marked "correction required for increased(S/N)0 for
VSB." For FM the change in required ERP for improvement in quality
(Higher (S/N)o) has a slope less than one due to the fact that the required
increase in ERP is reduced because with FM a modulation improvement is
realized,

By reference to Figure 3.4.3 of Section 3 the modulation
improvement of FM can be determined for any derived value of (S/N)O.
Thus, if a particular value of improvement or relaxation in desired output
signal-to-noise ratio is assumed, then the improvement factor that wili
be realized with an FM system operating at the threshold can be deter-
mined from Figure 3.4.3. The values for the improvement determination
in this way are shown in db on the curve in Figure 4.5.2 titled "Correc-
tion Required for Change in Modulation Improvement Factor.'" This curve

shows the amount of reduction in required ERP from that which wouid be
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required for VSB for a given db change in (S/N)o. For example, for a
4 db increase in desired output signal-to-noise or a quality equivalent
to 44 db signal-to-noise with VSB. The improvement factor for FM is
3 db greater than that which is realized for FM having a quality equiva-
lent to that provided with (S/N)O of 40 db using VSB. Thus, instead
of being required to increase the effective radiated power linearly by
a factor of 4 db as is the core for VSB with FM it is necessary to
increase the effective radiated power by 4 db less approximated 3 db or
approximately 1 db. The net correction factor that is required with
FM is shown on the curve titled "Standard Net Correction Factor for an
FM or Threshold Reduction FM System.'" This curve is derived by taking
the values for ERP that would be required if no modulation improvement
exists, such as is the case for vestigial sideband, and subtracting
from it the improvement factor reaiized with FM. This allows a reduction
in the required ERP by an amount corresponding to this improvement
factor. The sum of the ERP required for no modulation improvement
and the effective radiated power correction applicable to an FM improve-
ment which is an effective reduction in required ERP gives the net
correction factor applicablie to FM systems.

Using the correction factor curves from Figure 4.5.2 it
is possible to adjust the required satellite ERP caiculated in this
report for quality corresponding to a VSB output (S/N)0 of 40 db to

obtain required ERP for various other conditions.
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APPENDIX A

ENVIRONMENTAL ATTENUATION AND LOSS FACTORS

A-1 GENERAL
The absorption coefficients resulting from rain and atmos-
pheric losses both attenuate the desired signal and the added system noise.
For most cases these effects are small and increase with frequency. Since
loss due to Faraday rotation is not an absorption loss, it does not add
system noise.

A-2  IONOSPHERIC AND ATMOSPHERIC ATTENUATION (@ and B)

Although we have considered @ and B in the general system
equation, they are for the most part quite small over the frequency
range 0.1 Ge/s <f< 12 Ge/s. They are, however, important factors in
limiting the frequency range of consideration and at receiving sites
with very small elevation angles (large 9s).

@, the ionospheric absorption, decreases with frequency and
at frequencies above 100 Mc/s makes a system noise contributionl of about
10° corresponding to an attenuation of about 0.1 db. Cosmic noise as
shown in Figure A-1b at 100 Mc/s is between 500° and 2,000° K. Due to
the low value of ionospheric attenuation and the extremely small contri-
bution to effective noise temperature compared with cosmic noise, the
effect of jonospheric attenuation @ can be neglected for the purpose of

this study.

1Bagdady, E. J., ed. Lectures on Communication System Theory.
McGraw-Hill, 1961.
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B, the atmospheric absorption, increases with frequency and
effectively establishes the upper limit of the considered frequency range.
Atmospheric absorption B is caused mainly by the resonance of water vapor
molecules at 50 Ge/s. The tails of these resonance curves determine the
value of B below 10 Ge/s. B is an absorption factor expressed as a
normalized percentage reference to unity. Attenuation which is a ratio

normally expressed in db is related to the value of P by the relationship:
Attenuation in db = 10 log (1-8)

where B is absorption expressed as a ratio or normalized percentage.
Figure A-la gives the values of 10 log (1-PB), which is the actual signal
attenuation, as a function of frequency and Ss. Figure A-2.4.1b gives the
value of atmospheric noise temperature BTatm for the same variables.
Tatm’ the ambient temperature of the atmosphere is considered to be 290° K.
As 9 increases, the ray path goes through a longer length of atmosphere
and as a result, the signal is attenuated more. The curves showing atten-
uation [10 log (1—5)] and effective atmospheric noise BTatm are derived
from data reported by Hogg and Mumford1 and Rosenfeldz, respectively.

For antenna elevation angles greater than 7° above the
horizontal, the absorption P has no noticeable diurnal variation, and
only a very slight yearly variation. For those cases in which the value

of absorption B is not negligible, it will be considered as time invariant.

1Hogg, D. C., and Mumford, W. W., "The Effective Noise Temperature
of the Sky." The Microwave Journal, March 1960, p. 80.

2Rosenfeld, M. M., "Noise in Aerospace Communications." Electro-
Technology, May 1965, p. 40.
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A-3 SIGNAL ATTENUATION AND NOISE CONTRIBUTION DUE TO RAIN AND
CLOUDS - (Q, and Q)

From the system equation, the combined loss of energy due to
rain and clouds are accounted for by the two absorption factors--QH and
QN--which are the absorption factors in the horizontal and vertical
(normal) ray path direction, respectively, and the ambient temperature
of the rain medium--Tr. In this study it is best to represent QH and QN
as time statistics and this is easily done in terms of the rainfall rates
for the region under consideration.

In modeling QH and QN’ the contributions from clouds and

rain will be considered spearately, i.e., Q& = +

and QN = QNR

Qr + Y
QNC'

Considering QHR and Q__, Holzer1 presents a simplified
method for determining absorption Q and the corresponding attenuation

10 log (1-Q)

Attenuation (db) = 10 log (1-Q) = pqr A-1
where
Q = absorption expressed as a ratio (normalized percentage)

p = rainfall rate in mm/hr

q = value of attenuation (dependent upon frequency and rainfall
rate) coefficient in db/km/mm/hr

r = the length of the path through the rainy medium in km. For
temperate climates r for the vertical direction r, is approxi-
mately 3 km. For the horizontal direction, the length of path
through rainfall is related to rainfall rate by the following
empirical equation:

Ty = 41.4 - 23.5 loglop

1Holzer, W., "Atmospheric Attenuation in Satellite Communications."
The Microwave Journal, March 1965, p. 119.
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Figure A-2a gives q as a function of frequency and for rain
rates of 10 and 100 mm/hr. Attenuation coefficient q varies little with
p- Accordingly, the median of the two curves will be used. Statistics
on rainfall rates are shown in Figure A-2b for several locations. From
these rain statistics, the values of q given in Figure A-2a, and Equations
A-~1 and A-2, the percentage of time a given QHR or QNR is exceeded can be
determined. Figure A-3 shows values of attenuation QHR and QNR versus
percentage of time exceeded for rain rates in the Washington, D. C.,
area. This area is typical of a temperate climate. Curves are presented
for 4, 7 and 10 Gc/s. Below 5 Ge/s the effect is negligible. It is quite
small up to 10 Gec/s. QNR’ given in Figure A-3, is for a normal ray path.
For other than normal signal paths, the values are increased by sec Os.

It should be emphasized that although the attenuation in
the vertical direction QNR reduces the received signal strength, the
attenuation in a horizontal direction QHR reduces the effect of potentially
interfering signals. Thus, in some cases rain may be desirable. 1In any
event, the two are offsetting effects in terms of signal-to-noise ratio
and tend to reduce the effect of rain on the quality of signal received
from a satellite.

Attenuation due to cloud absorption is given by the relation1

10 log (1-QHC) = kCDr

where
kc = the attenuation coefficient
. 3
P = the water vapor content in gm/m
r = the ray path length through the clouds.

Holzer, Ibid.
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A-4 FARADAY 1OSS - POLARIZATION ROTATION

When a radio wave propagates in a magneto-ionic medium
(example, the ionosphere and the earth's magnetic field), the plane of
polarization rotates along the ray. The rotation of the plane of
polarization is a result of the birefringent characteristic of the
medium--that is, an incident electromagentic wave divides into two
characteristic waves, the ordinary and extraordinary. These two char-
acteristic waves can be thought of as two circularly polarized waves,
one right-hand circularly polarized, the other left-hand circularly
polarized. These characteristic waves travel different paths at dif-
ferent phase velocities and upon leaving the magneto-ionic medium
(ionosphere) they have a phase difference leading to a rotation of the
plane of polarization of the initially polarized wave. The amount of
angular rotation of the plane of polarization after traversing the
medium depends on the frequency of the incident wave and the physical
characteristics of the medium along the ray path, such as the magnetic
field and electron density. The total rotation of the plane of polariza-

tion is given by the expression:

NH cos @ ds
a=x

£ ray path A-3

If the assumption is made that H cos @, sec X varies little with

height and an average value is used,
h

2
-K-NHcoSQ'secX/ dh
£

h
1

0

ng



kc is a function of frequency and values for frequencies of interest are
given in Table A-1l. For a water vapor density of 0.3 gm/m?, a vertical
cloud extent of 6 km and an antenna elevation of 43° attenuation due to
clouds is given in Table A~-1. As shown in the Table, the attenuation is
negligible being a maximum of .396 db at 12 Gc/s.

Duration of clouds in the horizontal direction varies and
will have a small effect on the system.

For computational purposes, QH and QN will be determined by

QHR and QNR since QHC and QNC will be negligible in comparison for the

elevation angles of interest.
TABLE A-1

ATTENUATION DUE TO CLOUDS FOR AN ELEVATION ANGLE
OF 43° AND WATER CONTENT OF .3 em/m

Frequency, Coefficient of Ray Path
. Attenuation (kc) Length (43° elev.) 10 log (l-QHC)
(Ge/s) | (db/km/gm/u’) (kn) (db)
4 : .026 8.8 .0686
6 | .043 8.8 .1133
8 i .065 8.8 .1710
10 .095 8.8 .2500
1]
|
12 .150 8.8 .3960
1 [




> .

In the above equations:
Q = polarization rotation angle, radians

f = wave frequency, cps

N = electron density, elec/m
H = magnetic field intensity, amp-turns/m
@ = angle between the magnetic field and the direction of propagation

ds = element of path length = sec X dh
X = angle between ray and the vertical at the satellite location

dh = incremental altitude

and
° -2
K = ——2— =2.97 x 107, MKS units
8™ m" CE
o
where
e = electron charge
Mo = permeability of free space
C = velocity of light
m = mass of electron
E0 = permittivity of free space

These equations are valid under the following conditions, all of which
are fulfilled for the frequencies of interest in this report.

(1) The operating frequency is large compared to the
collision frequency, the highest plasma frequency in the ionosphere,
and the gyro frequency;

(2) The ordinary and extraordinary rays follow essentially
the same path;

(3) The quasi-longitudinal approximation is valid. (The

quasi-longitudinal approximation is a modification of the equation for

10-A
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the refractive index that holds when a significant component of the mag-
netic field is in the same direction as the direction of propagation.

The quasi-longitudinal approximation is, as a rule, fulfilled for angles
where @ . 80° if the frequencies considered are significantly higher than
the plasma or giromagnetic and collision frequencies.)1

If the electron density of the ionosphere remained constant
and the magnetic field were a known constant value, the problem of the
rotation of the plane of polarization could be overcome by rotating the
axis of polarization of either the transmitting or receiving antenna
until maximum coupling was obtained. However, it is well know that the
ionosphere density varies with time in a variety of ways. Therefore, it
is not possible to accurately predict the amount of rotation. Since the
exact amount of rotation of a linearly polarized wave cannot be determined
even at a specific frequency, circular polarization or special reception
techniques may be necessary, the need depending to a large extent on the
frequency of operation desired.

It can be seen in Equation A-3 that the amount of polariza-
tion rotation is inversely proportional to the frequency squared. Thus,
it may be expected that at some point in the spectrum, as the frequency
of operation is increased, the rotation will become negligible. A model
atmosphere was assumed and the amount of rotation computed for the case
of a receiving antenna located at 40°N latitude directed toward a synch-

ronous satellite located 22,500 miles from the equator at the same

lNamazov, S. A., Determination of Electron Density is the Ionosphere
by Analysis of Polarization Fadings of Satellite or Rocket Signals, NASA
Washington, D. C., October 1962.
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longitude as the receiver station. This configuration results in an
elevation angle of the antenna of—43° or a Os of 47°.
Based upon the work of Harold Pratt as reported in the

. . . )
IRE Transactions on Communications Systems , it is reasonable to assume

the following value for the magnetic field H and electron density N in

the ionosphere:

H Cos § = 30 2mp-turnms

meter

N=2.8X 1012 Electrons

(meter)3
The above values were assumed to exist between 232 and 370
km and to be zero elsewhere.
Using the values of rotation computed from Equation A-3
for the frequencies of interest in this report, loss due to polarization

mismatch was calculated using the following relationship:

1-FL = 0052 Q

which in db is expressed as

Loss (db) = 10 log (1-F ) = 20 log Cos Q
where FL = normalized percentage energy lost due to polarization mismatch.
The following values of loss are possible if both the transmitting and

receiving antennas are linearly polarized and if the ionosphere electron

density and magnetic field are not greater than the assumed values.

1 . .

Pratt, H. J., "Propagation, Noise and General Systems Considera-
tions in Earth Space Communication." IRE Transactions on Communications
Systems, December 1960.
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TABLE A-2

FARADAY 10SS IN A STANDARD ATMOSPHERE--CASE I

(Linear Polarization at Transmitting and Receiving Antennas)

Frequency Q 10 log (1-F)
(Ge/s) (Radians) (db)
L200 > T/2 Can be infinite if O = /2
.400 S T/2 Can be infinite if Q = m/2
- 600 .961 4.83
.800 541 1.34
1.0 .346 .532
2.0 .086 .131
4.0 .021 .002
6.0 .009 0
8.0 .005 0
10.0 .003 0
12.0 .002 0

At the lower frequencies the rotation angle exceeds T/2 and
it is possible that the polarization of the received wave will be orthogonal
to the receiver antenna polarization and the loss can be infinite. Thus,
at these frequencies circular polarization most likely will be used for
either the transmitting or receiving antennas. At the higher frequencies
the loss is insignificant and linear polarization of both the receiving
and transmitting antennas will not cause significant loss.

In considering the possible signal loss due to polarization

mismatch, three antenna configurations are considered in the system analysis.
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They are:

Case I - Both transmitting and receiving antennas
are linearly polarized.

Case I1 - The transmitting antenna is circularly
polarized and receiving antenna is

linearly polarized.

Case III - Both transmitting and receiving antennas
are circularly polarized.

The frequencies considered for possible use in this report
ranged from approximately 200 Mc/s to 12 Ge/s. Since polarization rotation
is a function of frequency, the type of antenna polarization configuration
(Case I, II, or I1I) depends on the portion of the frequency spectrum at
which the system is operating. Each antenna configuration has associated
with it a loss. For example, at low frequencies configuration II or III
may be used, and the associated loss will be -3 db for Case II and zero
for Case III. For mid-frequencies (600 Mc/s to 4 Gc/s) configuration
I, II, or III may be used. The loss for Case I is taken from Table A-2.
The loss for Case II is 3 db and the loss for Case III is zero. At the
higher frequencies, Case I is used exclusively. The effect is zero. As
pointed out, in certain of the frequency ranges alternate configurations
are possible. These alternates were considered. The difference in cost
of the different configurations was considered in the computation of
total system cost.

A-5 IONOSPHERIC TRANSMISSION I10SS

Besides losses due to Faraday rotation, the principal con-
cern in transmitting signals from a stationary satellite is dispersion
caused by the variation of the velocity of propagation with frequency

(i.e., the signal components of different frequencies experience differing



phase shifts which can result in significant distortions of the composite
signal wave shape). This effect, if severe enough, can limit the amount
of bandwidth available for utilization in a communications system.

A number of commentators have attempted to definitize the
nature of the loss which may be expected from the dispersive effects of

the ionosphere L, 2, 3.

An accurate analysis is dependent on a
thorough knowledge of the ionospheric transmission characteristics as

a function of frequency, modulation, and look angle. Adequate informa-
tion on these factors does not appear to be available. Several estimates
of transmission bandwidth as a function of frequency are indicated in
Figure A-4. As is apparent, there is considerable difference. The
optimized FM system would require an RF bandwidth of about 32 Mc/s,

and about 48 Mc/s for a system using FM feedback. According to this

the highest carrier frequency usable would be those indicated in the

Table below:

TABLE A-3
IONOSPHERIC CONDITION F(Standard) T(Feedback)
Reinhart et el
Minimum Electron Density - 90° 370 Mc/s 490 Mc/s
Minimum Electron Density - 20° 420 Mc/s 750 Mc/s
Maximum Electron Density - 90° 750 Mc/s 1,200 Mc/s
Maximum Electron Density - 20° 1,300 Mc/s 1,800 Mc/s
Gould 800 Mc/s 950 Mc/s

1Swayze, D. W.. "On the Transmission Characteristic of the Ionos-
phere." Proceedings of IEEE Annual Communication Conference, Boulder,
Colorado, June 7-9, 1965.

2Reinhart et el, "Multiple Access for Communications Satellites."
Stanford Research Institute Report.

3Gould, R. G., "A Study of the Influence of Commercial Communication
Requirements on the Design of Communication Satellites." SRI Report 3390,
January 1962.
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In addition to the above, Starasl makes the comment that
under the condition of using FM and a modulation index of ten, it would
be necessary to use a frequency higher than 1,000 or even 3,500 Mc/s.

It is evident that there is not yet sufficient information
to make a confident prediction as to the limitation on bandwidth due to
the ionosphere. It is important that these limitations be determined

| as they will play a key factor in determining at what freqneucy wide-
band communications from satellite may be used.

Finally it should be point out that as a function of
satellite height, the dispersion effects should be counted oat, whatever

their exact nature may be.

1Staras, H., "The Propagation of Wide-Band Signals Through the
Ionosphere." IRE, July 1961, p. 1211.
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APPENDIX B

ENVIRONMENTAL NOISE

B-1 GENERAL

As discussed in this Appendix, the envirommental noise is
specified at a receiving installation as a brightness temperature over
some solid angle. The contribution of this brightness temperature to the
antenna temperature is ascertained by weighting the brightness temperature
in a given direction by the antenna gain in that direction. The total
contribution from a particular source is then determined by summing up
or integrating the differential contributions.

In the discussions to follow, the various types of noise are
considered as average brightness temperatures over the solid angle which
they subtend. The antenna temperature can then be found as the product of
the average brightness temperature and the average antenna gain over the
solid angles.

B-2 BACKGROUND COSMIC NOISE TEMPERATURE--(TCK)

The values of TCK depend upon the orientation of the receiving
antenna with respect to the galactic center. As the orientation changes,
TCK varies between the limits shown in Figure A-lb. As can be seen from
the Figure, TCK decreases rapidly with frequency, becoming negligible at
1 Ge/s. For system evaluation, the values of TCK’ which are in the middle
of the TCK range, were used since the higher values are only obtained when
the antenna is pointed at the galactic center.

B-3 DISCRETE SOURCES

The contribution to the total antenna temperature of an

earth-based receiver from discrete noise sources (sun, moon, radio stars,
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etc.) is determined by (1) the antenna gain in the direction of the noise
source, (2) the noise power density from each discrete source, and (3)
the angle subtended by the discrete source. Discrete sources of primary
interest (those which may produce sufficient noise to be significant)
are the sun, moon and a few radio stars.
() Sun

Of the discrete sources, the sun is the largest poten-
tial contributor to the antenna temperature. Because of its small angle
of subtension, it is a factor only when in the main lobe of the antenna.
For discrete sources, the contribution to effective antenna temperature
is a function of the antenna gain to a greater extent than for distributed
noise sources. The noise temperature contribution and per cent of time
the sun is within the beam can be determined as a function of the antenna
gain.

The effective antenna temperature contribution from

the sun is given by

QS
Tsa = TspTl
B-1
where TSA = noise contribution from the sun in °K
TSB = brightness temperature of the sun in °k
s = solid angle_subtended by the sun in steradians

(¥6.3 x 107° steradians)
(g

QB, in steradians is related to the antenna beamwidth by the relation:

solid angle of the antenna main beam in steradians.

.~ _ FByB
B~ 3,280

where eB and @B are the antenna beamwidths in the © and ¥ direction

2-B
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respectively, and are expressed in degrees. For the case of a symmetrical
pattern antenna, such as a parabola, eB = @B. Figure B-1 shows the sun's
antenna noise contribution as a function of frequency and antenna beam-
width for two conditions of the sun. These conditions are the quigt sun
and the disturbed sun. Figure B-1 was developed from brightness tempera-
ture data given in the literature.1

One limitation imposed on the analysis of the effects
of noise from the sun was a lack of data on the time distribution of noise
power radiated. Because of the complexity of the solar radio spectrum,
it is difficult to establish statistics on the percentage of time the sun
is disturbed. It is known, however, that the disturbances are more
frequent and intense near sun spot maximum.

In addition to the magnitude of the antenna temperature
contribution from the sun, it is meaningful to consider the per cent of
time the sun will be in a position to effectively increase the antenna
temperature. In determining this, the assumption is made that only the
contribution through the main beam is significant. Figure B-2 shows the
total per cent of time the sun is within the antenna beamwidth as a func-
tion of the antenna beamwidth. This curve was computed using data from
a nautical almanac (1964) showing the sun's declination (angular position
relative to the celestial equator) throughout the year. Assuming that the
receiving antenna is located at the same longitude as the synchronous
satellite and at a specific latitude (say 40°) the declination of the
antenna with respect to the equator can be computed. The declination will

be different for each antenna latitude and varies from 0° declination

;Filipowsky, R. F. and Muehldorf, E. I., Space Communication
Systems. Prentice Hall Inc., 1965.
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PER CENT OF TIME IN A YEAR THE SUN IS WITHIN THE ANTENNA BEAM
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if the antenna is at the equator to approximately -8° declination when
the antenna is at a latitude of 70° N. The curves shown in Figure B-2
are for antenna declinations of 0°, -6° and -7°, corresponding to
antenna locations at the equator, 40° N latitude and 50° N latitude,
respectively.
The curve in Figure B-1 is used in conjunction with
the curve in Figure B-2 to determine the maximum or minimum antenna
temperature contribution from the sun for specific beamwidths and the
per cent of the days of the year and hours of the day the sun is
within the beamwidth.
An example of how the curves can be used is as
follows:
Receiving antenna location - latitude 40° N, longitude
same as satellite
Beamwidth - 15°
Frequency - 1 Ge/s
From Figure B-1 the antenna noise temperature contri-
bution from the sun at 1 Ge/s and a beamwidth of 15° lies between 1.5 x 102
and 3.4 x 102 °K depending upon the condition of the sun.
The antenna location is 40° N latitude and the antenna

beamwidth is 15°. From Figure B-2 it is seen that the sun is within the

beamwidth approximately one per cent of the hours in a year.

Thus, one per cent of the hours in a year (or approximately

one hour per day or 76 days of the year) the sun's contribution to the
antenna noise temperature will lie between 1.5 x 102 and 3.5 x 102 °K.
It is quite obvious that the noise contribution from the sun is not a
raﬁdom phenomenon, but is quite predictable in that the specific days of

the year a 15° antenna beam will be looking at the sun can be determined.
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Also, which hours of the day the antenna will be looking at the sun is
predictable. Therefore, the per cent of time the sun will contribute
noise to the total antenna noise temperature can be associated with
specific times at which the noise will occur and should not be interpreted
as random interference that could occur at any time.

(2) Radio Stars

Superimposed on the general background radiation due
to the galaxy are numerous discrete sources, each generally less than 1°
in extent. Since the majority of these sources cannot be identified
with visible objects, they are known as radio stars.

The strongest of these sources show a tendency to
occur near the plane of the galaxy. 1In general the noise contribution
from a single radio star is minor relative to the galactic background
unless extremely high-grain, narrow-beam antennas are pointed in the direct-
ion of the star. The relative geometry of the synchronous satellite
and Zround receiving antenna is such that the declination of the receiving
antenna with respect to the celestial equator varies between -8° and
+8° when the antenna location varies between 70° N latitude and 70° S
latitude.

Thus, the portion of the celestial sphere the antenna
sees lies between the limits -8° and +8° declination. The most intense
radio stars (Cygnus A,Cassiopeia A, etc.) lie outside this interval.

Since the ground antenna beam does not intercept significant radiation
from discrete radio stars, the contribution from these sources may be

neglected.




(3) Moon
The moon as a contributor to the total antenna tempera-

ture is not particularly significant due to the low level radiation
(approximately 230° K brightness temperature at frequencies from 300 Mc/s
to 10 Gc/s) assuming the angle subtended by the moon is 0.5°. The only
time the brightness temperature would be equal to 320° K would be if an
antenna beamwidth of 0.5° or smaller were used. If the beamwidth is 5°,
the effective antenna temperature contribution from the moon drops to
2.3° K and if it were 10° the temperature is®0.6° K. These temperatures
would only occur during the small per cent of time the moon would be
within the antenna beamwidth. Since the radiation level and the per
cent of time the source would be within the beamwidth are both relatively
small, the moon's contribution to the total antenna temperature may be

ignored.

B-4 INDIGENOUS NOISE (Ti)

At the present time, the available data on indigenous noise
are limited and outdated. The Department of Commerce is currently establish-
ing a program to obtain extensive indigenous noise data and develop mean-
ingful noise statistics. The current standard noise data are found in
the ITT Handbook.l These data as indicated in Figure B-3 present the
noise in terms of equivalent field strength. Indigenous noise values
are given up to 1.0 Ge/s for urban or city locations., Urban indigenous

noise decreases exponentially with frequency. On a log-log plot it is

1Reference Data For Radio Engineers, Intermational Telephone and
Telegraph Corporation.
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linear. By extending this line, of the log~log noise versus frequency
plot beyond 1 Ge/s, values were extrapolated out to 12 Ge/s.

The ITT data are presented in terms of equivalent noise
field strength (Ei). This can be converted to an equivalent brightness,
temperature through the relation

E 2 22 K,2
i
TL T AR TF

B-2

where Ei is the noise field strength given by the ITT data for a 10 kc
bandwidth, A is wavelength, z is the impedance of free space which is
120™ ohms, K is Boltzman's constant, V/2 for small angles is the ratio
of the angle radians subtended by the indigenous noise at the antenna
to the total solid angle, 4™ and Kn is a correction factor to convert
the basic field strength data to field strength for other than 10 kec.

Values of TI determined from Equation B-2 are given in
Table 4.3.1 for ¥ = .18 radians or 10°, a value of Ei which corresponds
to that which is not exceeded at approximately 60 per cent of the location,
and B = 4 Mc/s. Values are given for maximum indigenous noise assumed
appropriate for urban locations and 10 per cent urban noise considered
appropriate for suburban locations. The relationship between an and
frequency is also given in Figure B-3.

In the determination of receiving system cost, indigenous
noise is an important factor. Computations have been made for the
various values shown in Table 4.3.1. The variation of receiver cost
with the type of location can be established as well as functional relation-

ship between cost and indigenous noise.

1Values for indigenous noise given in the ITT data are for bandwidths
of 10 kc. To extend the data to higher bandwidths, the 10 kc values must be
multiplied by the factor given in Figure B-3. This factor can be used to
correct indigenous noise expressed as either power density or equivalent
brightness temperature.
10-B




Sixty per cent of the receiving locations will have values
equal to or less than those given in Table 4.3.1. Seventy per cent of
the locations will have noise less than 1.30 times these values and 90
per cent of the location will have noise less than 4.25 times these values.

In the selection of an antenna location for a particular
receiving site, the surrounding terrain or structure could be used to
reduce the indigenous noise. The values given in Table 4.3.1 would be
representative of a much higher percentage of well designed receiver
locations, than locations which are selected at random. A second factor
1s that the major portion of indigenous noise results from poorly insulated
automobile ignition systems. At the present ignition systems are much
better insulated than when the ITT data were taken.

Indigenous noise as given in Table 4.3.1 will be representa-
tive of 90 per cent or more of the possible locations by 1970 if good use
is made of the surrounding terrain.

B-5 AMBIENT TEMPERATURES (Ta T

g td TQI')

The physical temperature of all absorbing mediums determine

tm’TION’TRF’

the amount of noise generated by these media. These absorbers and their

corresponding ambient temperatures are: the atmosphere - T the ionos-

atm’

phere - TION’ rain - TQr’ the earth - Tg’ and the antenna feeder system -

TRF'
The noise radiated by these absorbers is a linear function

of the ambient temperature expressed in degrees Kelvin. An ambient tempera-

ture change of 70° Fahrenheit to (° Fahrenheit results in a change of the

absolute or Kelvin temperature of the medium of 291° to 251°. This is a
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1

change of 13.8 per cent. A large temperature change therefore does not
alter the noise generating properties of the medium to any great extent.
The ambient temperature will change diurnally and yearly, but should not
change the noise enviromment appreciably.
In the system under consideration, a given standard of service
will be demanded a high percentage of time. For computational purposes,
! all ambient temperatures are assumed to be 290° K, which is about 70° F.
Ambient temperatures above this value will be experienced a small percentage
\ of time, but the absolute temperature will change little on a percentage

basis.
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APPENDIX C

MODULATION ANALYSIS

C-1 MODULATION TECHNIQUES

The techniques other than standard vestigial sideband
which might be used for transmitting television should be capable of
a power-bandwidth trade-off. To keep cost down, the technique should
not be excessively complicated. The logical choices of possible modula-
tion systems are frequency modulation (FM) and puise code modulation
(PCM). These two modulation systems have been considered for sateliite
communication ahd their relative merits are discussed in the literature,
It should be pointed out that PCM comes very close, in channel infor-
mation content, to the theoretical limits of information theory. FM,
while not as potentially efficient, is a much simpler system.

Figure C-1 gives the block diagram of a PCM system. At
the point of origination, the analog waveform is sampled at the rate
2b/sec, where b is the bandwidth of the waveform being sampied. Each
sample is compared with L possible coding levels. The level closest
to the value of the sample is selected and n pulses are coded to repre-
sent the discrete level L. For a two level code (0 or 1) the relation

between the discrete levels and number of pulses (n) per analog sample is
. L =
log, n

The binary puises from the coded output are then either
transmitted as AM or are used to modulate a phase reversail carrier

system, The pulses can be transmitted in double sideband (DSB) or

1-C
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. @

single sideband (SSB). For the DSB case the RF bandwidth is BRF = 2nb,

and for SSB, BRF = nb., For SSB, either a vestigial sideband or synchronous
detection system must be used. Due to the selection of a discrete level,
quantization noise is effectively added to the signai at the coder. The

ratio of signal to quantization noise is reiated to the number of pulses

| per analog sample n as foliows:
Q= % (4) n c-1

At the receiver the pulses, in the form of AM or PM, are
detected to give the binary video information and are then decoded.
Due to the random nature of noise and the decoding process itself, a
signal-to-noise improvement is realized in going through the decoder.

This improvement is in the form

10 log (S/N)0 =2.2 (S/N)p.d Cc-2
where

(S/N)p d is referenced to the total

predecoder bandwidth (nb).

As can be seen from Equation C-2, the improvement is exponential in
form and depends entirely on the predecoder signal-to-noise ratio. It
should be pointed out that Equation C-2 is valid only for (S/N)KTnb 2>
' 14 db., Where KTnb describes the noise in the total RF bandwidth.
Below this threshold the given amount of improvement is not realized.

If DSB with envelope detection is used, the predecoder signal-to-noise

is 3 db less than the RF signal-to-noise when both are referenced to
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the same bandwidth. For vestigial sideband, both are the same, and for
synchronous detection a 3 db improvement is realized. In Figure C-1
the major receiver costs directly associated with PCM are the decoder
and the synchronous detector, if it is used.

The block diagram of a standard FM receiver is shown in
Figure C-2, The improvement factor for the FM modulation system is

of the form
=3 -
(S/N)0 =3 (s/N)FFb c-3

where M is the modulation index and (S/N)RFb is the pre~limiter signal-

to-noise considering only the noise in the baseband, (b). The improve-

3
2

the same noise band. The total required radio frequency band required

ment factor is M2 and both signal-to-noise ratios are referenced to

for FM is given by

Bpp =2 (L+ M) b C-4a

and the input signal-to-noise considering the noise in the total RF band is

1

(S/N)in = E?T—I—Eb (8/N) C-4b

RFD

The improvement given in Equation C-3 is only valid for
(S/N)i 2 12 db, unless a threshold reduction technique is used. A review
n
of the literature indicates that this appears as a conservative value of

FM threshold.
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c-2 COMPARISON OF PCM AND FM FOR SATELLITE TELEVISION

In studying the advantages and disadvantages of the proposed
techniques, an investigation of the system operation in the vicinity of
threshold is meaningful. This is due to the fact that we can expect the
improvement factor to increase with RF bandwidth as shown by Equation C-1
for PCM and Equation C-3 for FM. However, it is important to recognize
that as bandwidth is increased and more noise appears, the threshold
also increases. We can therefore expect an optimum system improvement
at threshold.

Combining Equations C-3 and C-4b we have the output signal-

to-noise in terms of the overall input signal-to-noise
/Ny = B + 30) (/M) C-5

From Equation C-5 the modulation factor which will give
the desired output signal-to-noise in terms of the threshold ratio can
be determined. For high quality pictures the necessary output signal-
to-noise ratio is in the neighborhood of 40 db. Solving Equation C-5
for (S/N)_ = 40 db or a ratio of 10% and (S/N), = 12 db or a ratio of
15.8 gives M = 5.6. From Equation C-4 the RF bandwidth for a baseband
b of 4 Mc/s is 52.8 Mc/s and the actual improvement over (S/N)RFb is
a ratio of 40.5 or 16.6 db.

In a PCM system the number of pulses per sample must be
seven or greater in order that the quantization noise ratio, Q, be above
104 (equivalent to 40 db). From Equation C-1, Q = 2.4 X 104 or equiva-

lent to 43.8 db for n = 7, For a television signal which is 4 Mc/s wide,

this gives an RF bandwidth of 28 Mc/s for a SSB system.
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The improvement at threshold is given by Equation C-2,
However a minimum value of 14 db must exist to achieve this improvement.
For (S/N)p.d of 14 db or a ratio of 25, (S/N)0 equals a ratio of 105
or 50 db. The limitation on bandwidth of the PCM system is therefore
dictated by the quantization noise and not the noise seen by the receiver
at threshold,

If we now assume a constant noise power spectral density
for both systems, we can determine the relative sateilite ERP required

at threshold. This is given by

T e BEAD 28 -
. (m - % B@Ew) ® 587

where 1.6 takes account of the fact that for PCM the minimum threshold
must be 14 db or 2 db higher than the minimum value of 12 db for the FM cost,
The power required by the PCM system is .71 db beiow that for the FM
system, for the required minimum output signal-to-noise of 40 db. However,
s was stated in themain bodyof this report, FM produces a triangular
output noise which has less degradation effect than normal flat noise.
For this reason, FM will have a lower power requirement at threshold than
PCM to achieve an effective 40 db output quality referenced to noise in
an AM (or SSB) system., It should be realized that the assumed 40 db
required for high quality reception is based upon AM noise.

From the above, it appears that the main advantage in a
PCM system is its conservation of bandwidth. However, it is costly due
to the requirement for a seven bit decoder at the receiver; it has
little flexibility since a seven bit code must be used; and does not

provide a power reduction over an FM system which is operated in the

vicinity of threshold,
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APPENDIX D

TELEVISION STANDARDS

D-1 GENERAL

According to the recommendations of the TASO Committee,
television broadcast standards should be designed in such a way as to
provide the viewer with a high quality signal for a large percentage
of the time. These recommendations were predicated on statistics on
the subjective quality of pictures. In addition, the FCC has derived
a series of curves which can be used to predict coverage as a function
of frequency, power, and antenna height above ground. These serve as
a basis for predicting a certain quality of signal from a particular
station within defined contours of coverage. Signal qualities are
referred to as Principal City, A, and B grades, and are identified
with the presence of a certain field strength at not less than 50 per
cent of the receiving stations within the particular coverage contour.
The classes of service used to identify television coverage in the

United States are summarized in Table D-1.
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TABLE D-1

FCC_FIELD STRENGTH REQUIREMENTS FOR TELEVISION GRADES OF SERVICE

Grade of Quality Required Signal Strength
Service Description (Median Value)
Chs, 2-6 Chs. 7-13 Chs. 14-83
Principal Not explicitiy defined 5010Hv/m  7080Mv/m  10,0004v/m
City
A Quality acceptable to a 2510 3550 5010

median observer which is
available 90 per cent of
the time at the best 70
per cent of receiver loca-
tions at the outer limits
of the service area,

B Quality acceptabie to a 224 631 1580
median observer which is
available 90 per cent of
the time at the best 50
per cent of receiver loca-

tions at the outer limits
of the service area.

The required signal strengths shown in Table D-1 are those specified

by the FCC to be used for calculating the different grades of service
for conventional television using ground-based transmitters. A close
correlation with these values has been established from detailed studies
of empirical data conducted by TASO and collected in the New York UHF-TV

Project. The pertinent results of these studies are tabulated in Table D-2.



TABLE D-2

MEASURED FIELD STRENGTH REQUIREMENTS FOR
SPECIFIC GRADE OF SIGNAL AS DEFINED BY (S/N)0

Median
Signal Observer
Grade Description S/N (db) Median Field Strength (Hv/m)
Chs. 2-6 Chs. 7-13 Chs. 14-83
1 Excellent; picture of 44,5 NA NA NA
extremely high quality
2 Fine; high quality; 33.5 1,000 5,400 10-33,000
Interference perceptibe
3 Passable; acceptable 27 100 500 1,750
quality; interference
not objectionable
4 Marginal; poor quality; 23 25 100 500
interference somewhat
objectionable
5 Interior; very poor 17 -- 31 175
quality; objectionable
interference present
6. Unuseable;so bad could -- -- 13 60

not watch it

D-2 STANDARDS OF QUALITY APPLICABLE TQ SATELLITE SYSTEMS

Standards and experience with conventional ground-based

television have relevance to the study in that they provide insight into
the value of output signal to nolse ratio required to provide different
qualities of pictures. These values are shown in Table D-2 above and

indicate a subjective determination using an average viewer, While much
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experience has been gained with respect to the field strength necessary

to ascertain different qualities of reception from ground-based teievision
stations, it is important to recognize that there is a significant dif-
ference between the effects on propagation from a ground-based transmitter
to ground-based receivers as compared with propagation from a sateilite

to ground-based receivers. In the case of a ground-based system, it

is necessary to specify received signal requirements in terms of a median
field strength vaiue. This takes into account the statisticai variation
in the value of received fieid strength. The statistical variations
represent differences in received field strength with location and time
from a median value. This variation is in the order of + 10 db, and is
caused by the fact that propagation is in the atmosphere and usually

over rough terrain with receiving stations often shielded by terrain

or man-made obstacles. It is to overcome this variation and provide

for reception at a high percentage of locations for a high percentage of
time that large values of median field strength are specified as require-
menbs in Table D-2.

It is realistic to relate signal to noise output values with
quaiitites of service as shown in Table D-2 and apply these as require-
ments that are appropriate for reception from sateilites. However, it
is not realistic to use the values identified with ground-based television
broadcasting as shown in Table D-2 as field strength requirements for
satellite reception. The concept of a statistical distribution of received

signal strength does not appiy. A more meaningful method of determining
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signal strength requirements for reception from satellites is to relate
the required signal to noise.ratio at the receiver output to required
signal and signal to noise at the input taking into account antenna gain,
receiver noise figure, modulation improvement, frequency of operation,

etc, This will establish the required signal strength from the sateilite.
From this the effective radiated power from the sateilite can be calculated
using the one-way propagation equation.

These factors are the ones considered in this study. For
purposes of comparative analysis of the costs of various system combinations
it is sufficient to consider that those combinations of factors which
provide a S/N ratio equal to or greater than 35 db at the input of the
receiver will provide a high quality picture;40 db is used for purposes
of this study as representing a good objective. It should be pointed
out that a "per cent of the time" expression for received signal strength
is eliminated by virtue of the relatively constant nature of the received
signal.

A primary factor which will determine the amount of field
strength required to provide a 40 db S/N at the receivee output is the
amount of so-called "indigenous" noise at the receiving site. In other
words, the amount of field strength required in rural areas, where there
is little of this noise wiil be less than the field strength required
in urbanized areas, where there is a high noise level. As indicated
in other sections of this study, knowledge of present levels of indigenous
noise is very scarce and present estimates must be based on rough appro-

ximations.

T
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This section on television standards is based on the
transmission and reception of a television signal using amplitude modula-
tion. As indicated in Appendix C on modulation improvement, the use
of other moduiation techniques, e.g., FM and PCM, will permit the reduc-
tion in the required S/N at the input of the receiver teo obtain a parti-
cular grade of signal. This correspondence between requived $/N and
moduiation method is discussed in sufficient detail in that section
and shall not be discussed further here, other than to note that spec-
ification of S/N is the preferred way of comparing and evaluating picture
quality.

D-3 FREQUENCY BANDS

Table 3-D identifies the allocations to Broadcasting and
Communications Services in the band .1-12 Ge¢/s. This study has not been
concerned with the type of service under which sateliite transmission of
television might be accomplished--but rather has examined the technical
factors that are applicabie if it is assumed that this transmission
might occur anyplace within the band .1-12 Ge/s.

D-4 INTERNATIONAL IMPLICATIONS

These discussions have been based on the television industry
in the United States, where there is a well developed set of standards
and practices based on the 525 line per picture system utilizing a channel
width of 6 Mc/s, and a video bandwidth of 4 Mc/s. There are basically
three other types of systems presently being used throughout the worid,
The pertinent characteristics of these four systems are summarized in

Table D-4.
Because of the technical differences, the miniwuvw roquive-
ment for S/N will vary somewhat between systems.
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TABLE D-3
ALLOCATIONS TO BROADCASTING AND COMMUNICATIONS SERVICES
(.1-12 Ge/s)

Allocation
Frequency
Band (Mc/s) Uu.S, Internationai
100-108 Broadcasting FM Broadcasting
174-216 Fixed, Mobile IV Broadcasting
Broadcasting
470-890 Broadcasting TV Broadcasting
1710-1850 Fixed, Mobile Unspecified Government
3500-3700 Fixed, Mobile Unspecified Government
Radio location; Comsat
3700-4200 Same as above Common Carrier, Fixed
Space
4400-4700 Same as above Government Unspecified
5925-6425 Same as above Common Carrier Fixed
7250-7300 Comsat Comsat (Space)
7300-7750 Fixed, Mobiie Comsat Comsat, Metsat. (Space)
7900-7975 Same as above Comsat (Earth)
7975-8025 Comsat Comsat (Earth)
8025-8400 Fixed, Mobile, Comsat Fixed, Mobile, Comsat (Earth)

11,700-12,700 Fixed, Mobile, Broadcasting Common Carrier, TVSTV, and
Pick up



TABLE D-4

WORLD TELEVISION STANDARDS

Characteristic A B —C D
Number i:ines Per picture 405 525 625 819
Video Bandwidth Mc/s) 3 4 5 10.4
Channeiwidth (Mc/s) 5 6 7 14
Interiace 211 211 211 211
Line Frequency (c/s) 10.125 15.750 15.625 20.475
Field Frequency (c/s) 50 60 50 60
Picture Frequency 25 30 25 25
Sound Modulation AM FM FM FM
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